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Welcome 
 

In the last session we looked at electric fields. This is the first of two sessions in which we 

shall study magnetic fields. In session 8 we’ll put the electric and magnetic fields together to 

get Maxwell’s electromagnetic theory. 

In this session we’ll begin with Faraday’s law of electromagnetic induction. We’ll describe 

and use the analogy between a current loop and a magnetic dipole and study the magnetic 

energy in various situations, including the energy density of a magnetic field. Finally we’ll 

look at magnetic forces from the point of view of the interaction between moving electrical 

charges, the Lorentz force law, and describe the force between current carry wires, the Biot-

Savart law.  

 

Session Author 
 

Dr Sarah Symons, University of Leicester. 

 

Session Editor – Tim Puchtler 
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Learning Objectives 
 

 Describe and apply Faraday’s law of electromagnetic induction 

 Describe and use the analogy between a current loop and a dipole 

 Use the formulae for energy density of the magnetic field 

 Describe magnetic forces in terms of the interaction of moving charges 

(Lorentz force)  

 Describe the force between current carrying wires (Biot-Savart Law) 
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The Problem 
 

For the problem in this session we return to space. The statement of our problem is 

illustrated in the pictures. What do these pictures illustrate? Let’s toss around some ideas:  

 

Image1 

Is this a refueling operation? It could be, but why use such a long connector? Is this a power 

source then? A way of boosting payloads into space? A braking mechanism? Actually it 

could be all of these. But then in all cases it must be extracting energy from the environment. 

So let’s ask a different question: what is the tether interacting with? If the tether is a 

conductor the most likely candidate is the Earth’s magnetic field. So we’ll start with this.  

  

                                                           
1 Images credited to TSS-1, STS-46 Crew, NASA, 

http://www.nasa.gov/vision/universe/roboticexplorers/tethered_spacecraft.html 
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Dipole Fields 
 

The Earth’s Magnetic Fields 
 

The presence of a magnetic field at the surface of the Earth has been known since ancient 

times, although first studied in the 17th Century. The field is not uniform over the surface – it 

changes in strength by a factor of about two and also varies in angle. By studying these 

variations we can deduce that the field approximates that of a bar magnet. Although the 

field is not exactly that of a bar magnet, we can use this approximation to deduce how the 

field falls off in strength as we go away from the surface of the Earth into space. 

 

 

The figures give an approximate representation of the Earth’s field as similar to that of a bar 

magnet. We’ll have to think about what the lines and arrows mean. For an electric field they 

represented the force on a unit charge. For magnetism the analogue of a unit electrical 

charge is not a unit magnetic charge – magnetic charge does not exist. For the moment we 

can rely on our intuitive picture of the field lines as pointing in the direction of a compass 

needle. 

N 

S 

N 
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The field lines in the pictures represent an approximately dipole field. As we’ll see shortly, 

an exact electrical dipole is obtained by placing a positive and a negative charge close 

together, so that field lines appear to start and end at adjacent points. A magnetic dipole is 

similar in that the field lines start and end at adjacent points, which we call the south and 

north poles. The Earth’s field is not produced by a bar magnet, but we’ll see later why it 

appears as though it is, at least to a first approximation.  

How do we know the field is there?  

As well as the compass we get some picturesque evidence of the Earth’s field from the 

aurora. These result from charged particles in the Earth’s magnetosphere spiraling down 

magnetic field lines and colliding with oxygen and nitrogen atoms in the Earth’s 

atmosphere. These collisions excite the gas atoms, which then de-excite by emitting visible 

radiation – green and red in the case of atomic oxygen. The aurora are centred on the 

magnetic poles not the geographical ones, confirming the association with the Earth’s 

magnetic field.  

 

Image2 

 

Dipole Fields 
 

To determine the magnetic field in space we need to know how it falls off with altitude. 

Contrary to what many students appear to think, not all fields fall off as the inverse square 

of the distance. The Earth’s field is at least approximately a dipole. So our first task is to 

study dipoles. We’ll illustrate this with an electric dipole. This consists of a positive and 

negative charge, +q and –q,  in close proximity. In the figure they are a distance  apart.   

                                                           
2
 Dueling Auroras, Credited to NASA 
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The dipole moment of the charge distribution is the moment of the charges about their 

centre, which is here twice q time /2  or q . The potential of the charges at the field point P 

is given by the sum of the Coulomb potentials for each charge, which is expressed in 

equation (1). This can be approximated by using the binomial theorem as shown in equation 

(2), provided that the field point is sufficiently far away from the dipole so that r >> . 

 

 

The field is found by differentiating the potential. The radial component is just the 

derivative with respect to r. The component in the  direction – the azimuthal component – 

is a bit more complicated – it’s the change in V per unit distance rd   in the  direction, not 

per unit angle. Hence it’s 1/r times the derivative of the potential with respect to , not just 

dV/d .  

 

A dipole field falls of as 1/r3 
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Magnetic Dipoles 
 

In the case of magnetic fields we do not have the analogue of charges – magnetic poles do 

not exist. So we use the field structure we have just derived as the definition of the field of a 

magnetic dipole. Thus, we derive the magnetic field of a magnetic dipole of strength m from 

the derivative of 0mcos /r2.  

You need to be careful with units here: the product of current I times area A has SI units of 

amps m2. Sometimes you’ll see the dipole moment quoted as Tesla m3. This is not the same – 

the latter units arise when the magnetic moment is taken to be what we have called 0m – in 

this case the formula would not have the factor 0 explicitly.  

However, all this is of little use if we do not have some way of finding the dipole moment m. 

So we’ll turn to that next.  

 

SI unit of: B is Tesla (T) 

m is A m2  (amp metre2) 

                      0m is T m3  

0 = 4   10-7 N A-2 

What is the field on the axis of a dipole at distance r ? 

 

Current Loops and Magnetic Dipoles 
 

Recall that magnetic fields originate from moving charges. Thus, we can ask the question, 

what configurations of moving charges give rise to a dipole field? The answer turns out to 

be current loops. We can find the magnetic field of a small loop of current from the Biot-

Savart law of session 5. By comparison with the dipole field we can then deduce the 

expression for the dipole moment of the loop. From one point of view therefore, current 
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loops play a fundamental role in magnetism similar to that played by elementary charges in 

electrostatics.  

 

To derive this result we start by dividing the current loop of radius a, carrying a charge  

per unit length, into small elements of charge ad . We assume these elementary charges 

are moving with speed v in order to create the current I in the loop. The field at the point P 

due to the small element ad  is given by the Biot-Savart law for the field of a moving charge, 

equation (1). For off-axis field points the calculation is difficult, so we’ll restrict attention to 

the field on the axis of the loop as shown in the figure.  
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The working for these equations is explained below. 
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We begin by integrating equation (1) round the loop to sum up the effect of all the 

elementary charges. It should be clear from the figure that the component of B 

perpendicular to the axis sums to zero since the contribution from one side of the loop 

cancels a similar contribution from the opposite side. We therefore calculate just the 

component of B along the axis, which we’ve called B//. This brings in the factor cos( /2 - ) or 

sin . For the electric field E, we substitute the field of a point charge of magnitude ad . 

This gives us equation (2).  

Now we have to add the fact that 0, 0, and c2 are related by c2 = 1/ 0 0. We’ll see how this 

comes about in a future session, but for the moment we’ll just take it as a fact – a numerical 

fact if you like. We also have an expression for sin  as a/r. Finally we need the fact that v is 

the charge passing a point every second, so it’s just the current in the loop, I. Putting this 

together gives us (3). Identifying a2 as the area of the loop A gives us (4).  

We can compare this with the electric field of a dipole. The two expressions are the same, 

excluding the constants 0 and 0 which just look after the units, if the dipole moment is 

replaced by IA.  

IAm
r

d
E

o

d 24

2
 

Off axis the field of the loop is only a dipole if we are far enough away that the loop can be 

treated as almost a point. 

A current loop is a magnetic dipole of moment IA 

 

Energy of the Field 
 

Since we are going to talk about extracting energy from the magnetic field, it will be useful 

to identify the energy of the field.  

As we’ve said many times, the fundamental approach to physics involves postulating an 

energy for each of the fundamental fields. (This isn’t as difficult as it sounds – there is only 

one standard pattern that works, modulo a few thematic variations.) For the magnetic field 

the energy is B2/2 0 per unit volume. 

Energy per unit volume has the same dimensions as force per unit area. So this must also be 

the order of magnitude of the pressure exerted by a magnetic field on moving charges. It’s 

not exactly the pressure, because dimensional considerations don’t tell us about any 

numerical constant (which is actually 1/3 here).  
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The energy per unit volume of the magnetic 

field is 
0

2

2

B
 

 

Energy per unit volume = force per unit area, so this is 

also the order of magnitude of the pressure exerted by 

a magnetic field 

 

Summary 
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SAQs  
 

1. A typical magnetic field at the surface of the Earth is 0.5 10-4 T. What is the magnetic 

moment, m? Give your answer in Am2 to the nearest integer, times a power of 10, in 

the form n, m 

2. Estimate the current in amps in the Earth required to produce the Earth’s magnetic 

field to the nearest power of 10. (Enter your answer as the integer power.) Note: The 

Magnetic  moment of Earth, 0m = 5 1016 Tm3   

3. The solar wind exerts a pressure of 1.7  10-9 Pa.  At about how many Earth radii is 

this balanced by the pressure of the Earth’s magnetic field? Give your answer to the 

nearest integer.   

 

The answers appear on the following page 
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Answers 
 

1.  7, 22   (6 to 8 , 22 is acceptable) Use the formula for a dipole field at a radius of 6378 

km.  

 

2. Substitute for m from question 1 in the formula m = IA. The answer may depend on 

what you take for the core radius, Rc. The liquid core extends to 3400 km which is the 

value we’ve used with A = Rc2. 

 

3.  10 (8 to 12 is acceptable). The pressure is of order B2/2 0. Calculate the value at the 

surface and multiply by (RE/r)6 (where RE is the radius of the Earth) to get the 

pressure at r where this balances the solar wind. Note the question asks for the 

number of Earth radii r/RE.  
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Magnetic Induction 
 

Faraday’s Law 
 

Here we come to one of the fundamental laws linking electric and magnetic fields, Faraday’s 

law of induction.  

Before we start, recall the meaning of the flux of a field through a given area – the flux of a 

field is the strength of the field times the area. 

  

There are two pictures which give the same result: 

 

In the first we take a length of conductor and move it across a fixed magnetic field.  The 

directions are important – only the field perpendicular to the plane of the motion matters. In 

the image, the conductor moves across the page and the field points into it. This cutting of 

field lines induces a potential difference between the ends of the conductor. Faraday’s law 

says that the induced potential difference equals the rate of change of the flux of the 

magnetic field.  

 

In the second picture we take a fixed loop of conductor and place it in a time varying 

magnetic field. This time the rate of change of flux comes from the changing field. Not the 

movement of the conductor, but the result is the same: Faraday’s law says that the induced 

potential difference equals the rate of change of the flux of the magnetic field.  
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Feynman describes it as a remarkable coincidence that these two different situations should 

follow exactly the same law.   

 

We are now in a position to address the problem of the tether. This is a conductor moving 

through the Earth’s magnetic field. Faraday’s law will give us the induced potential 

difference. Try making your own estimate of the potential difference from the data before 

you look at mine.  

There are several ways of approaching this. I prefer to get a formula for the result before 

substituting numbers: it’s easier to correct mistakes that way. I’ve also avoided having to 

look up data for big G and the mass of the Earth. I’ve calculated the speed of the spacecraft 

from what we learnt in session 2; but, of course, I could also have guessed a value for the 

speed of a spacecraft on the grounds that they orbit in about 90 minutes at the Shuttle 

altitude.    

Data: 

Earth’s field at surface:  BE = 0.5 10-4 T  

Field at low Earth orbit, say 200km : BE(RE/r)3 – differs from BE  by about 10% so take 

as BE 

Speed of spacecraft v = (GM/r)1/2 = (GM/RE2  RE2/r)1/2  (gRE)1/2 

Length of tether = l = 20 km 

EMF = Bvl = BE(gRE)1/2l = 8 kV 

Whatever the value you got, it should be quite large. But what use is a potential difference?  

Recall that the air at this height is ionised by solar radiation – so it is a plasma, that is an 

electrically conducting gas. This provides a return path for current. In other words, we can 

complete the circuit and extract power from the tether. 

 

Extracting Power 
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Suppose we try to extract power from the tether by connecting to some load. Given that the 

tether acts as a battery with internal resistance, what is the maximum power available? We 

looked at this in one of the additional problems of session 4. The maximum power occurs 

when the load impedance is matched to the impedance of the battery. For a 200km tether the 

internal resistance is 2000 ohms, so total resistance will be 4 kilohms; 8 kilo Volts then 

supplies a current of 2 amps. This gives a power, I2R, of 8kW in the external load and 8kW 

dissipated in the tether.   

 

Are we getting something for nothing here? Where is the energy coming from? 

The cutting of magnetic field lines by the tether induces a potential difference. This gives rise 

to a flow of current in the tether. The action of the magnetic field on this current will now 

produce a force on the tether. We’ll look at this in the next section and then consider the 

conservation of energy.  

 

Summary 
 

Faraday’s law: the potential difference induced in a circuit equals the rate of change of 

magnetic flux linked to the circuit 

dt

d
V  
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SAQs 
 

1. A plane circular coil of radius  a is threaded by a uniform magnetic field B = B0 sin t 

normal to the plane of the coil. What is the pd induced in the coil?  

a) 2 aB 

b) a2B  

c) 0 

d) ½ a2 B0  

e) a2 B0 sin t  

 

2. A circular coil of radius a spins at n revs per second about a horizontal axis in a 

uniform vertical magnetic field B. What is the pd induced in the coil? 

a) 0  

b) a2nB  

c) 2 2 a2 n B sin 2 nt  

 

 

The answers appear on the following page 
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Answers 
 

1. a) Wrong: You’re thinking of the circulation – the induced voltage involves the flux 

of the field.  

b) Wrong: this is the flux of B, not the rate of change of flux which is what you want 

c) Wrong: there is a pd round the circuit, which will drive a current 

d) Wrong: you’re thinking of the rms value, which is not what is asked for 

e) Correct: this is the time derivative of the flux  

 

2. a) Wrong: the fact that there is a closed circuit does not mean there is no pd round it. 

b) Wrong: this is the flux times n which is not the same as the rate of change of flux 

c) Correct: the normal component of the field must be Bcos2 nt  so the time 

derivative of the flux is as given. If you got  2 2 a2 n B cos 2 nt  this is also right if 

you’re measuring time from the moment  the coil and field are parallel rather than 

perpendicular.   
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Magnetic Forces 
 

We start from Faraday’s law for the potential difference induced in a conductor by a 

changing, magnetic flux. Let’s once again imagine a conductor forming part of a circuit, 

moving through a magnetic field B with speed v. The magnitude of the potential difference 

induced in the circuit is d(phi)/dt. If a charge q moves down this potential the work done is 

qV. The nub of the calculation is to put the work done equal to the force times distance, and 

thereby find the force on the moving charge.  

  

strength equal with fields  and   the tocouples particle chargeA 

)( then present, also is  If

  charge,  aon    force  Lorentz    -     :In vectors

 wirein the charge of flow  theinduce  to:Direction
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Equation (1) gives us the work done in terms of the rate of change of area, using the fact that 

the field is constant. But the rate of change of area is just the velocity v times the length of 

the conductor, which is itself the distance through which the force moves the charge to 

generate the potential difference. Thus we obtain our result, equation (2), which says that the 

force on a charge q moving with speed v in a magnetic field B is just qvB. The direction of 

course is along the wire (in the direction of the potential drop). It’s easiest to remember the 

direction from the right hand rule of vector multiplication. If you (or your students) are not 

familiar with this, another way to get the direction is to use the left hand rule as shown in 
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the figure. Align the first finger of your left hand with the field, your second finger with the 

speed and your thumb will give you the direction of the force.  

Once current flows, there is a force on the wire: this means that the external agent does 

work. The energy does not come from the magnetic field. 

The Lorentz force is perpendicular to the motion of the charge, so does no work. Where then 

does the energy come from to drive the induced current?  

 

 

 

Consider the situation once a current starts to flow: the charges constituting this current now 

have a motion along the wire. They are subject to a Lorentz force perpendicular to the wire. 

If you work out the direction you’ll see that it is exactly opposite to the motion of the wire. 

The force on the tether opposes the motion of the spacecraft and tether. This causes the orbit 

to decay, reducing the gravitational energy of the system. So if we extract power from the 

tether by drawing a current through it, the energy extracted is paid for by loss in 

gravitational energy.   

 

Force on Current loops 
 

However, the tether is part of a current loop and so is the source of the Earth’s field. So to be 

more specific we should look at how the forces act on current loops.  
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Energy of magnetic dipole  = - m.B  

                                             = - mB cos   

 

 Translational Force on loop = - mcos  dB/ds  

 

We have seen that we can think of current loops as the elementary components of 

magnetism, like point charges in electrostatics. As usual the fundamental dynamical 

quantity is the energy, U say. Once we have this we can derive forces and torques. However 

there isn’t an easy way to derive the energy of a dipole, so we’ll just quote the result: the 

energy of a magnetic dipole aligned at an angle  to a magnetic field B is mBcos  or m.B  

The force on a magnetic dipole in a direction s will be –dU/ds. The moment m is constant so 

we get –m.dB/ds for the force. Note this is a bit surprising – the translational force on a 

dipole in a uniform field is zero; only if the field varies in space will there be a net 

translational force – although even a uniform field will exert a couple on a dipole of mBsin . 

Torque on loop = - mBd(cos )/d  = mBsin  = m  B 

 

Force between Two Wires 
 

Finally, let’s look at the force between two wires, because this is part of the definition of the 

amp. Consider two straight wires a distance r apart.  
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The field of wire 1 at wire 2 is obtained from Ampere’s law as in session 5. It is B = 0I1/2 r. 

The force on a unit length of wire 2 is obtained from the Lorentz la: it is charge per unit 

length times v times B, or I2B. 

So the force is 0I1I2 /2 R. Of course, this is also the force on wire 1 due to the current in wire 

2. Note that like currents attract, unlike ones repel.  

An amp is defined as the current in each wire a 

distance of 1 meter apart that gives a force of 1 

Newton 

 

Let’s apply what we’ve learnt to the tether. The extraction of power from the tether leads to 

a force opposing the motion of the tether through the magnetic field. This creates a drag on 

the satellite-tether system. So this will lead to a decay of the orbit. The ultimate source of the 

energy is therefore the gravitational potential energy of the satellite.  

This suggests that a tether might be used in reverse, as a way of maintaining a spacecraft 

orbit by driving current through the tether in the opposite sense. 

We’re not quite done: suppose we use the system to drive the spacecraft to a higher orbit. 

What happens to the angular momentum?   
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We know that the speed in an orbit of radius r is (GM/r)1/2, so v is proportional to r-1/2. The 

angular momentum mvr is therefore proportional to r1/2, hence goes up as the orbit recedes. 

Where does this angular momentum come from? 

It does not come from the Earth’s magnetic field. Instead, the magnetic field acts like an 

elastic connection between the spacecraft and the Earth’s core. Pulling on the lines of force at 

one end eventually moves them at the other causing the core to respond. The source and 

sink of angular momentum is therefore the rotation of the Earth’s core.  Looked at another 

way, the current loop at the spacecraft interacts with the current loop in the core creating a 

torque on the Earth equal to the rate of change of orbital angular momentum.  

The opposite happens when power is extracted from the tether – the Earth acquires the lost 

angular momentum.  

 

Summary of the Tether Problem 
 

 The cutting of lines of magnetic field by a conductor induces a potential difference 

between the ends of the conductor 

 The circuit can be closed by the plasma (conducting gas) is space 

 The magnetic field exerts a force on the current in the tether producing a drag 

 The electrical energy produced in the tether therefore comes from the gravitational 

potential energy of the satellite 

 The Earth’s dipole field can be thought of as resulting from a current loop 

 The current loop at the tether and the equivalent current loop in the Earth’s core 

interact to transfer angular momentum between the satellite and the core.  

 

Section Summary 
 

The force on a charge q moving with speed v in an electric field E and a magnetic  field B is 

q(E + vxB) (the Lorentz Force)  

The energy of a magnetic diploe m  in a magnetic field B  is –m.B  

The torque on the dipole is mxB 

The force between two long straight wires a distance r apart with currents I1 and I2 is  

r

IIo

2

21  



26 
 

 

SAQs 
 

1. A ring of current in a uniform magnetic field suffers a torque but no net translational 

force. Explain. 

a) The force is always outwards in the plane of the ring 

b) The direction of current flow is opposite on the two sides of the ring so the forces 

cancel, but the moments do not cancel if the plane of the ring is not perpendicular 

to the field 

c) There is no force on a ring in a magnetic field 

 

2. Two long straight wires with like currents have the distance between them halved.  

Does the force (a) double (b) halve (c) quadruple (d) reduce by a quarter (e) stay the 

same 

 

The answers appear on the following page 
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Answers 
 

1. a) Wrong: The force is only in the plane if the ring is perpendicular to the field. 

b) Correct: In a uniform field any two elements diametrically opposite each other 

suffer equal forces, but the moment of these forces about the centre is non-zero if the 

plane of the ring is not perpendicular to the field. 

c) Wrong: there is no net force because the forces cancel, but each element of the ring 

that carries a current that is not aligned with the field is subject to a force. 

 

2. a) Correct: this is another example of the fact that not everything is an inverse square 

law. The force follows from Ampere’s law that the field falls off as 1/R 

b) Wrong: The force is stronger if they are closer. 

c) Wrong: it’s not an inverse square law! 

d) Wrong: the force increases if the wires are closer 

e) Wrong: assuming that the currents remain fixed. So the force increases by 2. 
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Additional Problems 
 

Problem 1: Cyclotron 

 

A cyclotron employs a magnetic field to hold charged particles in circular orbits. The size of 

the orbit is determined by the strength of the field and the energy of the particle. Calculate 

the radius of a cyclotron required to accelerate protons to 8 GeV in a magnetic field of 9 T.  

 

 

This cyclotron won’t actually work. Can you guess why things are not so easy in practice? 

 

To solve the problem we use the Lorentz force law in the orbit equation, and the expression 

for the kinetic energy to eliminate the speed v. The data are taken from the Large Hadron 

Collider at CERN, which is 27km in circumference. The discrepancy between the actual 

diameter and the one we’ve calculated here arises because we haven’t taken relativistic 

effects into account. This increases the radius by a factor of the square root of (the Energy of 

the particle divided by twice its rest mass energy) 

 

Problem 2: Van Allen Belts 

 

The Earth is surrounded by belts of charged particles trapped by the magnetic field. To do 

this the field acts like a magnetic bottle. The following images show how this can be 

understood.  
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Image3 

A magnetic bottle: 

 

Consider first the charged particle moving in a plane perpendicular to a uniform magnetic 

field – the orbit is a circle as in figure 1.  

 

                                                           
3
 The Location of the Van Allen Belts, BlatentNews.com, posted on www.flickr.com, Creative Commons 

Licensed. 
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The radius is given by the orbit equation (1) which balances the magnetic force on the left 

hand side with the centripetal acceleration on the right. Now add a component of velocity 

parallel to the field as in figure 2.  

 

The speed of the motion in the z direction along the helix is constant, since there are no 

forces in this direction. The charged particle just spirals up the field lines.  

Turn now to the case in figure 3 where the converging field lines show that the field is 

increasing in the z direction.  

 

The force is again perpendicular to the field and the velocity, so now there is a component of 

force in the negative z direction. This reduces the z component and eventually turns it 

round. This is a magnetic mirror.  A magnetic bottle is made from two mirrors as in the 

shaded regions on the preceding image of van Allen belts. See if you can reproduce the 

picture of the van Allen belts without looking back.  

 

Problem 3: The English Channel 

 

The English Channel is a conductor flowing through a magnetic field. There is therefore a 

potential difference between Dover and Calais which is a potential source of power. How 

large (or small) is it?  
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We use Faraday’s induction law to get the rate at which the sea cuts magnetic flux. The 

result depends on what you choose for the speed of flow, but the induced voltage is pretty 

small anyway, and clearly not a viable power source.  
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Overall Summary 
 

The potential of an electric dipole is given by: 

  

The potential of a magnetic dipole is given by: 

  
 

The magnetic dipole moment of a current loop is IA 

 

The energy of a magnetic field B is: 

  per unit volume 

The force on a charge q moving with speed v in an electric field E and a magnetic  field B is 

q(E + vxB) (the Lorentz Force)  

 

Faraday’s law: the potential difference induced in a circuit equals the rate of change of 

magnetic flux linked to the circuit 

 

The energy of a magnetic dipole m  in a magnetic field B  is –m.B  

 

The torque on the dipole is mxB  

 

The force between two long straight wires a distance r apart with currents I1 and I2 is  

 
 

 

2

04

cos

r

d

2

0

4

cos

r

m

0

2

2

B

r

IIo

2

21



33 
 

Meta tags 
 

Author: Sarah Symons. 

Owner: University of Leicester 

Title: Enhancing Physics Knowledge for Teaching – Magnetic fields 

Keywords: Magnetism; Induction; Forces; sfsoer; ukoer 

Description: In this session we’ll begin with Faraday’s law of electromagnetic induction. 

We’ll describe and use the analogy between a current loop and a magnetic dipole and study 

the magnetic energy in various situations, including the energy density of a magnetic field. 
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