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QM I: Examples: solutions

1. Use A = h/p = 8:62610°

muv

1. 48026x10 2L — 5,679 x 10~0m.

420x%1000/3600
—34
2. GLEI0— = 6.626 x 107%*m,
—34
3. 882010 — — 6.626 x 10~ *m.

Notice how small, even in the last case!

2. Using de Broglie’s relation
p="h/A
we find
p = hl|k|.
The other of de Broglie’s relations can be used to give

E = hv = hw.

One of the important goals of quantum mechanics is to generalise clas-

sical mechanics. We shall attempt to generalise the relation between
momenta and energy,

2

E=-mv?= L

2 2m

to the quantum realm. Notice that

h, 0

PO = HkU(rt) = T 0, 0, ()
By(r1) = hw(r,t) = 2 0u(r 1

Using this we can guess a wave equation of the form

S ((;) H(2)s (j)) vl 1) = 0y, ).

The momentum is represented by the three derivatives

ho RO RO
10z’ 10y’ 10z )"

3. If ¢1(x,t) and to(z,t) are both solutions of the time-dependent
Schrédinger equation,

o 12
~gaa i@ ) +V@)i(e,t) = i (at),
_%@QbQ(.Ia )+ (1,‘)1/)2(33‘, ) Sl ad}Z(w‘v )

Add the right-hand sides and the left-hand sides, and use the sum rule
for derivatives (e.g.,

02 0? 0?
@le(x,t) + sz?(x?t) = @ (1/11(%75) + 1/12(357t)) :

This completes the proof!

4. The norm is defined as

IR /Ola:Q(l—m)2da:

l l l
= /l2x2dx—2/lx3dm—l-/x4dm
0 0 0

1 1s 1 &
= P -2-P 4P =,
3 4 + ) 30
The normalised form of ¢(z) is thus
30
o(z) = Z—Bx(lf:v) 0<z<l,
¢(x) = 0 xz<O0andz >I.
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Figure 1: The potential

5. From left to right I define the regions I, II, IIT and IV. The continuity
conditions take the form

we find
br11(z) = Azcos(k'x) + By sin(k'z).

6. As shown in the lectures, the wave function in region I is ether a

sine or cosine, which means that in that region ¢ is even or odd. This
implies ¢(a) equals plus or minus ¢(—a). Since the wave functions
in regions I and III are identical exponents, we find that the whole
wave function is symmetric or antisymmetric.

. The wave functions are

I
COS 5o [ odd

o I
sin 5o [ even

di(x) = {

for —a <z <0, 0 elsewhere.

¢r(—a) = ¢rr(—a), ¢11(0) = ¢111(0), r11(a) = drv(a), ¢r(—a) = ¢(—a), ¢}I§85 g%??@?h%g&ﬂeg%m(iar}t-egrate two different solutions. One

This answers the question, but for those of you who want to see more
detail: We have to consider two cases,

o A —2Vj < EleqVy. we define

—2m /2m —2m

We then find
¢r(x) = Aref® 4 Bre ™™ drr(x) = Agel'™ 4 Bpe™H'®
o111(x) = Ascos(kx) + Bssin(kz) brv(x) = Agel® + Bye .

(By and Ay are zero for reasons of normalisability.) This allows
us to write explicit matching conditions.

e A —Vy < Eleq0. The only function tat changes is ¢r;. With
, 2m

K = ﬁ(E‘f‘VO)v

xamp vl # y do'Y only integrate from —a to a?)
/a sinl—ﬂsml/—ﬂdx
—a a 2a
= ;/_Z [—cos(lgé,)ﬂx—i-cos(l;cil)ﬂx] dx
= % [_ G fj’)w sin ¢ ;i,)ﬂx MG 262% sin ¢ _25)% aa

= 0

since [ 41" is even, and sinnw = 0 for n integer.

The other two cases (cosine with cosine, and sine with sine) are done
in a similar manner.

8. If E < —Vjp, we define

—2m , —2m
= 2
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In regions I and III the wave function is
gf)]’[[[(x) = Ae " 4+ Be”.

Normalisation implies that

¢1(x) = Bre™, orrr(z) = Aze™"".

In the same way
(b]](l') = A2€_H T4 B2€’i z

If we match the wave function and its derivatives at x = —a and x = a,

we find
— ! /
Bie ™" = Aye "% 4 Boe®
I !
kBie " = ¥ (Age_” ¢ — Bye® “)
_ / o
Ase R = Age™® 4 Boe™ "¢
! /
kAze " K (Age“ ¢ — Boe™ ® a)

Take the ration of the r.h.s. and Lh.s. of the first two equations, and
of the last two, and find

(k—K)e Ay + (k4 K)e" By =

(k+ )" Ay + (k — K)e By = 0

These equations can be shown to have only the zero solution, since
the determinant,

(k — K)%e 25 — (k + K/)2e?@
is negative for all values of x’. This can be shown from the facts that

et > 1 and (k — K)?/(k+K)2 < 1.

9. Main similarities: alternating even and odd states. Main differences:
for infinite well no continuity at boundaries, infinite number of bound
states, no wave function outside the well.

10. Incoming and reflected wave in region I, outgoing wave in II1, general

solution in region II. Define

2m 2m

The wave functions are

QSI(Z') — Aleikx+Ble—ikz
orr(xr) = Ape™™'® 4 Byem iK'

brir(z) = Aze™®

We match at a and —a,

. . - 1./ ;1!
Aje*a 4 Bietht = Age” R 4 Byt
. _ . 3 it 1
ik(Aje™ — Bieth) = k' (Age™*'® — Byet'),
ik ik’ —ik!
Aze™ = Age" 4 Boe 'Y,

ikAgeika = il{il(Ageik,a+Bze_ik/a).

Multiply the last equation by —1/(ik) and add to the penultimate one,

kN k

This can be solved for B,

K —k o
B, — 2ik aA,.
2T W ke
Similarly we find
Ay = 2k’ ei(k/fk)aAz
k+ K ’

We can eliminate B; from the first two equations, multiplying the
second with 1/(ik) and adding, using the relation for By in terms of
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As found above,

; K K -
Alefzka A2 —ik’a <1 + ) + 32 (1 _ ) elk‘ a
k k
K K —k o KN\
— Ase —ik’a 1 A 2ik’a 1-— — ik'a
2¢ <+k)+ k" < k>e
ik'a
e -1/ -1/
- A (k} k/2—2@ka_ k/_k22zka)
2k(k’+k) (k+E)%e ( )e
This allows us to relate Az to Aj,
Ay = ¢ 2ik—k)a 2kK’ Ay

(k + k') 2(k? + k'2) cos 2k'a + 4kk' sin 2k'a”

Since the wave numbers k in regions III and I are the same, the trans-
mission coefficient T is

é2
Aq

k/2k2
- (k? + k) [(k + k)2 cos? 2k'a + 4k'62k? sin® 2k'a]

-

The reflection coefficient R can either be calculated using similar
means, or through the relation R =1 — T

11. We start from

/OO e~ W dy = 7/ V/a.

—00
Use n e -
2 2
(—1)”n/ e~ Y dy :/ y* e Y dy.
da™ J_ ael oo

Differentiation the r.h.s. in the same way gives
dn
(_l)nﬂ

The integral with an odd power of y is zero, since the integrand has
equal positive and negative contributions. We thus immediately con-

clude that -
/_ é1(y) v (v)dy = 0

n
a=1 2

= (1" (-3) () () va = R

12.

13.

if [ + 1’ is odd. The remaining integrals are

/ do(y)oa(y dy—/ <1—2y2)e‘y2dy:f—2%f:o,

2 _ 1
/ é1(y) o3y dy—/ (y2—§y4)e dey:T/Tr—%% T =0.

First of all remember that a sum of solutions to the time depen-
dent Schrodinger equation is a solution to that equation (see previous
sheet).

The solution is
b t)
The probability is
[, ) = [91(2)2 + |62(2)? + 2 (61(2)pa(a) e B EI/AE).

If ¢1 and ¢9 are real functions the time dependent part of this equation
can be simplifies to

_ ¢1(x)€fiE1/ht+¢2(x)€fiE2/ht.

201 (z)p2(x) coswiat
with w12 = (El — EQ)/h

() 1/2
/ e R dy = <h> Nz
oo mw

o0 mw .2
/ ze  n ¥ dr = 0,

0 - 1 h 3/2
/ e WV dy = = <) N
oo 2 \'mw
oo 1 d:z:

- ) 1/2
e da2® 2
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14.

15.

Thus 1k
2y _+ v 2y _ +
(@) =5— @) = 5hmw
We conclude
1 h 1
Ax =\/—-——, Ap=14/=h
TV ome TPT VM
and )
AxAp = §h.

The worst the uncertainty in x can be is 2a. For a constant function

it is %a, so a is not a bad estimate. From Ap ~ h/21/Ax we
find Ap > % Since the well is not moving, we expect the average
momentum to be zero. We thus have
h2
2
> —.
<p > - 4a2
The expectation value of the Hamiltonian is then
h2
H) > )
(H) = 8ma?

Up to a factor 72 this is the exact answer.

Assume n < m. Then

[ @) ) (o
;
- [y ] )

o0

= [T [@) e ) ey
= nO;i,me

Here we have used aal = afa + 1, and ae=Y’/2 = 0. We thus find,

Opn = (1 = 1)...(0)Og.m—n = 0.

16.

17.

The 1st and 2nd eigenstates of the infinite square well of width a are
(normalised)

1 T h?
ne) =7 %% P g
1 T h?
= — 1 _— E prg
¢2 (x) \/a S a 2ma

We thus conclude that
U(e.0) = =1 (a) + —=bala).

Thus we find

L l —iFEoth
NG Va2

1 h
= ﬁ%(ﬂﬁ) exp(—ig—5t) +

Pz, t) = ¢1(x)e” PR 4

jggbg(m) exp(

We conclude that the possible outcomes of a measurement of the en-
ergy are F; with probability 1/5 and E2 with probability 4/5.

).

—q
2ma?

Initially the wave function is ¢(x) = ¢{(z) = ﬁ cos 5 for |z| < a,

and zero everywhere else. After widening the well, the first three new
eigenstates are (for |x| < 2a)

1 T

X = —=CO0S —
¢1( ) \/% 4a
1 . 7z

xr = S —
¢2( ) \/% 2,
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We immediately find

The probability of measuring the energy of each of these states is c7, 18. The Schrédinger equation is (for I = 0 ¢(z) = ¢(r), x(r) = Lé(r),
with chi(0) = 0)
B @1 T 1 T n &
¢ = _a\?cos%—kcosﬂ x —%WXI(T)f‘/OX[(T) = Ex(r) 0<r<a
3nw h? d?
= 75 B cos—+co 4—@ dx —%WXH(T) = Exi(r) r>a
= 1<4a[, il sm_ﬂl 4a[in3ﬂ—sin_3ﬂ])
f 2\ 3r 4 4 Define k = /=228 = /=2200=B)  We have
1 (4a 4a
= 75 (W 3-25 \f> xr(a) = xr(a),  xila) = xp(a).
8
3T

xr1(r) = Age™ "

(no positive exponent due to normalisability) and
@ 1 Tx 1 . 7x

co = 9 ﬁ cos o VT sin o dz x1(r) = Bysinkr
11 0™ (no cosine due to boundary condition at 0). Perform the matching at
= ﬂaQ/ sin ——da r=a,
- Ase % = Bjsinka,
—kAse™® = kBjcoska.
/ mx 1 3tz d
cg = — €08 — —— cos —— dx
—aVa 2a v/ 2a da Take ratio of left and right hand sides:
11 / T n OTXL d ‘ k
= — cos — +cos— | dx = —ka.
Va2 ). 1a 1a Ka cot ka a
_ 1 (4a sin ™ _gin =" | 4+ 4a sin om sin =57 First state when \/%a =m/2.
V2a \ 7 4 4 51 4 4
- \; ( 2= \f ) ﬁ) 19. ka = nggazE = 0.462 (use 2m = 1.66 x 10~2"kg, multiply MeV by
2a 57T 2

105 x 1.602 x 10719 to obtain energy in J. From the hint we conclude

= 5 ka = 1.80. From the expression
s

2m
Probabilities: 4, 0, 5%, ka = \/hZGQVO — (ka)?

9r2° ) 2572
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we conclude

h2
VO_

© 2ma?

[(ka)® + (ka)?] = (14 (1.80/0.462)%)2.33 = 37 MeV.

Notice how much deeper than the binding energy!

20. Cartesian

L = (§p. — 2y, 2P — &2, &Py — UP2)
_ ol _,0 90 0 9 9
N Vo2 oy’ Ox 0z’ Oy Yor
Thus

Lzexp(—a(z? + 32 + 22))
= —ih (y —20z1% + 2022, —2ax2? — x + 20222, O) exp(—a(z? + % + 22))

and
)
L zexp(—a(z? +9y° + 22)) = h2zexp(—a(z?® 4+ 19 + 22)).

Thus we have proven the answer.
Spherical: ¢(r,0,¢) = r cos fe—or* . With

and
.2 1 0 . 0 0?2

A A
n <Sin9608m989+8¢2>

The answer follows trivially.




