
     

 

and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CLIF Project 
_____________________________________________ 

CLIF technical design 

Chris Awre, Richard Green, Andrew Thompson, Simon Waddington 

July 2010 



CLIF technical design  - 2 -     

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

The CLIF Project 

Project Director:       Chris Awre (c.awre@hull.ac.uk) 
Project Manager:       Richard Green (r.green@hull.ac.uk) 
Project Site Manager for King’s College:  Mark Hedges (mark.hedges@kcl.ac.uk) 
    
The CLIF Project is being undertaken by the Information Systems Group at the University of Hull and 

the Centre for e-Research (CeRch) at King’s College London.  It is funded by the JISC Information 

Environment Programme ‘Repositories Enhancement’ strand. 

 

 

This material is made available under a Creative Commons Licence: Attribution-Noncommercial-

Share Alike 2.0 UK: England and Wales. See: http://creativecommons.org/licenses/by-nc-sa/2.0/uk/



CLIF technical design  - 3 -     

Table of Contents 

1. Introduction....................................................................................................... 5 

2. Aims and objectives .......................................................................................... 6 

3. Technical overview ........................................................................................... 7 
3.1 Fedora ........................................................................................................ 7 

3.1.1 About Fedora ................................................................................... 7 
3.1.2 Fedora objects .................................................................................. 8 

3.1.3 Content models ................................................................................ 9 
3.1.4 Disseminators ................................................................................... 9 
3.1.5 SWORD ........................................................................................... 9 
3.1.6 Fedora standards ............................................................................ 10 

3.2 SharePoint ............................................................................................... 10 

3.2.1 About SharePoint ........................................................................... 10 
3.2.2 Site documents ............................................................................... 11 
3.2.3 SharePoint workflows .................................................................... 12 

3.3 Sakai ........................................................................................................ 13 

3.3.1 About Sakai .................................................................................... 13 
3.3.2 CTREP ........................................................................................... 13 
3.3.3 The Sakai resources tool ................................................................ 13 

4. Integration investigation ................................................................................ 14 
4.1 SharePoint-Fedora integration ................................................................. 15 

4.1.1 Overview ........................................................................................ 15 
4.1.2 Scenarios ........................................................................................ 16 
4.1.3 SharePoint-Fedora deposit ............................................................. 17 

4.1.4 Metadata transformation ................................................................ 18 

4.1.5 Fedora object creation .................................................................... 19 
4.1.6 Authorisation and policy management .......................................... 19 
4.1.7 Object queue .................................................................................. 19 

4.1.8 Fedora ingest .................................................................................. 19 
4.1.9 Extensions of the basic scenarios ................................................... 20 

4.1.10 Fedora-SharePoint browse and retrieval ........................................ 21 
4.2 Sakai-Fedora integration ......................................................................... 21 

4.2.1 Overview ........................................................................................ 21 
4.2.2 Interface Description ...................................................................... 22 
4.2.3 Performance Improvements ........................................................... 22 
4.2.4 Authentication / Authorisation ....................................................... 23 
4.2.5 Content Formats ............................................................................. 24 

5. Enterprise architecture modelling: Enterprise Service Buses (ESBs) ....... 24 
5.1 Characteristics of ESBs ........................................................................... 25 

5.1.1 ESB versus messaging ................................................................... 25 
5.1.2  ESBs and CLIF .................................................................................. 26 
5.1.1 ESBs and the digital content lifecycle ........................................... 27 
5.1.2 Conclusions .................................................................................... 27 

6. Technical architecture .................................................................................... 28 



CLIF technical design  - 4 -     

7. Standards ............................................................. Error! Bookmark not defined. 

8. Acronyms and abbreviations ............................. Error! Bookmark not defined. 
 

 

  



CLIF technical design  - 5 -     

1. Introduction 
The CLIF project recognises that 

“At the heart of meeting institutional needs for managing digital content is the need to 

understand the different activities that the content goes through, from planning and 

creation through to disposal or preservation.  Digital content is created using a variety of 

authoring tools.  Once created the content is often stored somewhere different, made 

accessible in possibly more than one way, altered as required, and then moved for deletion 

or preservation at an appropriate point.  Different systems can be involved at different 

points: one of these may be a repository.  To embed repositories in the content lifecycle, 

and prevent them becoming yet another content silo within the institution, they thus need 

to be integrated with other systems that support other parts of this lifecycle.  In this way the 

content can be moved between systems as required, minimising the constraints of any one 

system.” 

CLIF Project Plan, April 2009 

The project thus set out to investigate how flexible support of such a lifecycle might be enabled in an 

institution that uses a Fedora-based repository1 and manages documents using Microsoft Office 

SharePoint Server2 (henceforth just ‘SharePoint’) and/or the Sakai academic collaboration platform.3 

This document brings together three separate reports that were outlined in the CLIF Project Plan:4 

 D3  A technical review document 

 D4 An ESB review document, and 

 D5 Documentation of the proposed CLIF architecture 

With the benefit of hindsight it is clear that the three reports are intimately related and it now 

seems more appropriate to present them as a single text where appropriate cross-referencing can 

be achieved more easily. 

It is hoped that this report will allow technically-aware readers to understand the underlying design 

decisions taken for CLIF and to reflect on these against the background of their own institution, and 

thus to consider how an approach similar to that taken by the Project might benefit their own 

colleagues.  Overall, it is hoped that the CLIF project will  

“bring about two key outcomes.  The first will be a fuller understanding, shared with the 

community, of the lifecycles that digital, and especially born-digital, materials undertake.  

The project will then show how Fedora, Sakai and/or MOSS technologies can be brought 

together to provide a coherent framework in which to provide integrated management of 

these objects throughout their lifecycles.” 

                                                           
1 Fedora Commons website:  http://fedora-commons.org 
2 Microsoft SharePoint site:  http://sharepoint2007.microsoft.com 
3 Sakai Project  See:  http://sakaiproject.org/ 
4 CLIF Project Plan at https://edocs.hull.ac.uk/muradora/objectView.action?parentId=hull:1647&type=1&pid=hull:1808 

http://sakaiproject.org/
https://edocs.hull.ac.uk/muradora/objectView.action?parentId=hull:1647&type=1&pid=hull:1808


CLIF technical design  - 6 -     

CLIF Project Plan, April 2009 

The choice of software, Fedora, Sakai and SharePoint, reflects the interests of the CLIF partners and 

advisers.  It is intended that the CLIF software outputs will eventually be made available to the 

community under an appropriate Open Source licence and that it will be possible to deploy code to 

link just one pair of systems (Fedora and SharePoint or Fedora and Sakai); potential beneficiaries 

from CLIF would not need an interest in both SharePoint and Sakai. 

Finally, readers should note that this document represents the team’s thinking at a particular point 

in time and it may well be that we shall change aspects of the CLIF design as the project progresses 

and as we learn more about the complex interactions that are involved in implementing this work. 

2. Aims and objectives 
The CLIF Project aims to address the following challenges: 

2.1 By linking the repository into other content creation and management environments it will 

be taken upstream in the user’s workflow.  Where the repository is best positioned within 

the content lifecycle requires investigation: it may be relevant at the end of the creation 

stage to move the content into a repository for access and/or preservation; or it may be 

appropriate to move content into the repository as a staging area for subsequent 

processing.   

2.2 The aim of integrating the repository at the appropriate part of the content lifecycle is to 

ensure that, when user activity crosses system boundaries, users do not feel constrained in 

what they wish or need to do; rather, the systems in question between them support these 

wishes and needs.  For example, moving content used for teaching in a VLE into a 

repository, maybe as part of building a portfolio, supports content re-use and the potential 

for long-term access. 

2.3 CLIF is starting from a point of agnosticism about the direction content will flow between 

the repository and other systems (the lifecycle may require movement in both directions).  

Nevertheless, by facilitating the links between systems it is intended to support 

preservation by allowing the content to be moved to a system that has preservation 

capability. 

2.4 The development of preservation policies for the repositories as part of the project will 

guide the technical work proposed.  Whilst looking at specific policies for preservation, the 

potential of incorporating the principles involved into wider institutional policies supporting 

research, teaching and administration will also be explored, to link the management of the 

content to the purpose for which it is being managed. 

All four of these challenges have had an influence on the work described here. 



CLIF technical design  - 7 -     

3. Technical overview 
This section gives an overview of Fedora, SharePoint and Sakai and outlines what the CLIF Project 

will initially try and add by providing a level of integration.  The section relating to Fedora is 

necessarily longer than the other two in order to provide the reader with a ‘Fedora primer’ sufficient 

to the understanding of some of the technical discussions that follow in later sections. 

3.1 Fedora 

3.1.1 About Fedora 

To quote from Fedora’s own documentation:5 “Fedora is an acronym for the Flexible Extensible 

Digital Object Repository Architecture. The Fedora Repository is very flexible; it is capable of serving 

as a digital content repository for a wide variety of uses. Among these are digital asset management, 

institutional repositories, digital archives, content management systems, scholarly publishing 

enterprises, and digital libraries. The Fedora Repository is able to store any sort of digital content 

item such as documents, videos, data sets, computer files, images plus it can store information 

(often called metadata) about the content items in any format. In addition, the relationships 

between content items can be stored - which is often as important as the content items 

themselves.” 

In the context of the CLIF project, Fedora is important as the basis for a number of repositories, 

institutional or otherwise, in the UK Higher Education sector.  Its flexible nature means that digital 

objects within a Fedora repository, the containers for each piece of digital content, can be structured 

in many alternative ways and we anticipate that this will bring its own set of challenges. 

Fedora has no out-of-the-box general user interface and thus must (and does) provide application 

programming interfaces (APIs) which allow all the necessary interactions with the content of a 

repository.  However, the very flexibility of the Fedora system means that there may be multiple 

ways of using these to achieve similar ends.  The APIs are provided through Web Service Interfaces 

(both REST and SOAP).  In addition to the APIs, Fedora provides a Simple Java Messaging Service 

(JMS) as middleware and this may well prove to be useful in CLIF’s work. 

  

                                                           
5 Fedora Tutorial 1 at:  http://fedora-
commons.org/confluence/download/attachments/4718930/tutorial1.pdf?version=1&modificationDate=1218459761506 



CLIF technical design  - 8 -     

3.1.2 Fedora objects 

In order better to understand the operation of Fedora we should first address the principles 

underlying the structure of Fedora digital objects, the Fedora Digital Object Model.  Provided here is 

a simple (perhaps even simplistic) summary of what can be a complex topic. 

 

 
Digital object identifier 
 
 
System properties 
Manage and track the object 
 

 
 
 
 

 
One or more datastreams representing content items 

 

Each object has a persistent, unique identifier.  It then has a set of system-defined descriptive 

properties that are necessary to manage and track the object in its repository.  Finally there are a 

number of datastreams which pertain to the digital content, the payload, of the object: some of 

these may represent the content itself, others may contain metadata about the content, there may 

be datastreams describing relationships between this object and others and there will be a system-

provided ‘audit’ datastream wholly managed by the system to record changes made to the object.   

Any Fedora object contains a Dublin Core (DC) metadata datastream; if the object’s creator does not 

provide one Fedora itself will generate it.  At the least this contains a title for the object and a formal 

record of its PID.  This information is indexed and provides the basis for Fedora’s basic administrative 

search mechanism.  In addition, a ‘simple’ Fedora object will contain only one content datastream, 

perhaps representing a text document or a PowerPoint presentation.  A ‘compound’ Fedora object 

may contain several content datastreams; best practice would suggest that these should all be the 

same content but expressed in different ways, perhaps the same image provided in a range of 

resolutions or the same text document in a variety of formats.  A ‘complex’, sometimes called 

‘atomistic’, Fedora object actually comprises a set of simple and/or compound objects.  The ‘parent’, 

or ‘aggregation’, object generally contains information about the remaining related ‘child’ objects; it 

has no digital content itself but describes and identifies the children. Thus a thesis consisting of a 

PDF text and three video clips might be represented by a complex object – a parent which describes 

the thesis, the clips and their relationships, and four simple objects each providing access to one of 

the files involved.  The files of digital content can be managed by Fedora itself but it is probably 

more common in practice that they are held in an http(s) accessible file store and the Fedora object 

contains URLs that allow the repository to retrieve them.  In theory, a content datastream can 

represent any form of digital content; put another way, Fedora is content agnostic. 



CLIF technical design  - 9 -     

The default configuration of Fedora allows for versioning.  Each time a datastream is changed a new 

version of it is created, thus allowing a user to revert to or otherwise use an earlier version should 

that be desirable.  If Fedora itself manages the digital content, that too is versioned; if not, the local 

system must be designed to keep versioned copies of the content in the external store. 

The information about the object and its datastreams is represented using XML.  Thus, the file on a 

Fedora server which represents a Fedora object contains XML, specifically Fedora Object XML 

(FOXML) which has a formally defined schema. 

 

3.1.3 Content models  

Since the release of version 3 of Fedora, the software has supported the concept of a Content Model 

Architecture (CMA) that is used to describe the common structures of objects in a particular 

repository.  Use of the CMA encourages (and potentially ensures) internal standards within a 

repository and allows the use of one particular feature of Fedora that may prove useful in CLIF’s 

development work, ‘disseminators’.   

 

3.1.4 Disseminators 

Disseminators can provide an abstraction layer between a Fedora object and the retrieval process. 

Instead of retrieving the contents of an object’s datastream directly, the process can be mediated 

through a disseminator which can transform it on the fly.  Thus, for instance, a Word document 

stored in a Fedora object could be called using a disseminator method that converts it and delivers it 

to the user’s browser as a PDF.  Although the idea is speculation at this stage in CLIF’s development, 

there may be a case for using this technology when transferring content between Fedora and either 

MOSS or Sakai.  Disseminator functions are not available in the reverse direction: it is not possible to 

have a disseminator convert the format of content being deposited in the repository.  However, 

there are deposit mediation tools available to the Fedora community and particular mention should 

be made of one of them, SWORD. 

 

3.1.5 SWORD 

The Simple Web-service Offering Repository Deposit (SWORD) tool is available as part of the Fedora 

Framework Services.  This JISC-funded software offers a common way to deposit objects into any of 

the three repository types common in the UK: Fedora, DSpace and EPrints.  SWORD’s deposit 

process is capable of producing simple or compound Fedora objects.  It appears from the web 

documentation provided6 that a very limited set of file types (MIME types) is accepted directly but 

that other types may be accepted if offered as part of a METS package.  The potential applicability of 

SWORD to CLIF’s work has been considered (see the introduction to Section 4). 

 

                                                           
6 See:  http://www.swordapp.org/sword/demonstrators 



CLIF technical design  - 10 -     

3.1.6 Fedora standards 

As we have noted above, Fedora is immensely flexible and so it would be appropriate to try and 

adopt a ‘standardised’ approach to it for the CLIF Project in order that any project outcomes may be 

re-usable in a straightforward fashion.  The Hydra Project7 provides just such a set of standardised 

approaches; in particular it provides a consistency of approach to content models and associated 

disseminators.  The CLIF Project will adopt the Hydra principles for the construction of content 

models, digital objects, disseminators and objects.  Whilst Hydra provides a basic set of content 

models, CLIF will need to supplement these with some of its own.  The additional content models 

and disseminators that may be required will be designed to be consistent with Hydra’s approach.  

The Hydra approach itself, tries to make a minimal number of assumptions about a repository and 

thus we hope that CLIF-generated Fedora objects will be widely useful. 

 

 

3.2 SharePoint 

3.2.1 About SharePoint 

According to the Microsoft SharePoint website:8 

“Microsoft SharePoint … makes it easier for people to work together. Using SharePoint, your people 

can set up Web sites to share information with others, manage documents from start to finish, and 

publish reports to help everyone make better decisions.”  Put very simplistically, amongst other 

functionality, SharePoint adds web-based collaborative facilities to the Microsoft Office family of 

software. 

The Northumbria University Investigation into the use of Microsoft SharePoint in Higher Education 

Institutions: Final Report9 summarised the use of SharePoint in UK HEIs and identified a range of 

drivers across the implementations that they studied: 

a) to improve document management: SharePoint document libraries can be deployed with 

version control, check in and check out, and metadata capture 

b) to support collaboration with external partners: if an organisation has an external connector 

licence they can add external people to their Active Directory, or equivalent identity 

management system, and allow site owners to provide them with access to particular 

SharePoint sites 

c) to improve cross-school/departmental working: site owners can allow access to sites to 

colleagues anywhere within the institution without having to go through an IT administrator  

d) to enable staff and students to find colleagues with similar interests: in SharePoint 2007 My 

Sites can make a profile of an individual available for the rest of the organisation to view or 

search on, though the take up of My Sites amongst staff and students has been relatively 

low 

                                                           
7 See:  http://fedora-commons.org/confluence/display/hydra 
8 See:  http://sharepoint.microsoft.com/en-us/Pages/default.aspx 
9 See pages i-ii of the report at: http://www.northumbria.ac.uk/sd/academic/ceis/re/isrc/themes/rmarea/eduservs 
p/ 

 

http://sharepoint.microsoft.com/en-us/Pages/default.aspx
http://www.northumbria.ac.uk/sd/academic/ceis/re/isrc/themes/rmarea/eduservs


CLIF technical design  - 11 -     

e) to improve an intranet or external website: SharePoint is more frequently used for intranets 

rather than the management of external websites. Customisation is required if an HEI wants 

a website in SharePoint 2007 to meet Web standards, including accessibility standards. 

Customisation is also required if an organisation wants to apply its branding to SharePoint 

sites 

f) to target information (typically through an intranet) to particular audiences 

g) to improve and automate cross-institution processes: though the institutions in the study 

have not found Infopath electronic forms easy to get set up and working 

h) to provide a personalised portal where staff and students can log-in to one place and access 

all the different systems of the HEI: SharePoint has a single sign on facility, although the HEI 

needs to write some custom code to get it to work 

i) to bring together and manage data from different information systems around the 

organisation: for example, in order to pull data from student databases and finance 

databases and display and manipulate it in the SharePoint environment. 

From these observations we can usefully extract some key points to inform the CLIF Project. 

It is clear that a significant number of HEIs in the UK are using instances of SharePoint for a wide 

range of purposes.  Significant amongst these, from the point of view of CLIF, are those instances 

where SharePoint is used in the (possibly collaborative) production of materials that will eventually 

have a wider audience than those individuals who have contributed to their authoring.  Such 

materials might include, amongst others, policy documents, agendas and minutes from meetings, 

learning materials, reports, and so on.  One can easily envisage a situation in which SharePoint is 

used as the authoring environment, taking advantage of its facilities for collaboration, versioning and 

the like, but where the final document is made available to a much wider audience by placing it in an 

institutional repository.  Equally, one might envisage in the case, say, of a policy document that the 

current version in a repository might be used as the starting point for a subsequent revision.  Thus 

one has the need to be able to transfer a document from SharePoint to the repository and later, vice 

versa.  (We have talked here in terms of document, but the same argument can be made for any 

form of content that might be originated within the Microsoft Office family of programs - and which 

was therefore suited to manipulation in SharePoint - including numeric data and databases.) 

This is quite a useful example for understanding CLIF’s approach to the content lifecycle.  During 

authoring or re-authoring, SharePoint would be an appropriate environment in which to work.  For 

exposing the content to a wide audience an institutional repository would probably be considered 

appropriate.  Going beyond that, a repository is probably far more suited to long-term preservation 

of the content should that be appropriate.  The CLIF Project is therefore interested in providing 

software that will allow the easy transfer of materials between SharePoint and a Fedora-based 

repository. 

3.2.2 Site documents 

The ‘Shared Documents’ area of a SharePoint site provides a drop-down menu for each document 

consisting of 

 view properties 

 edit properties 

 delete 



CLIF technical design  - 12 -     

 version history 

 connect to client, and 

 alert me 

In order to perform the simplest possible interaction with Fedora, that of copying a SharePoint 

shared document and from it creating a single Fedora repository object, CLIF will seek to add into 

this list 

 copy to repository 

and provide the appropriate functionality.  Reverse functionality, to fetch the content of a Fedora 

object into a SharePoint site, will also be developed. 

3.2.3 SharePoint workflows 

SharePoint provides the facility for users to define workflows to assist in the production of content.  

Consider this generalised and simplistic example: 

A team of three people work together to produce an undergraduate programme of study: the course 

leader, the Head of Department and an external examiner.  A workflow is set up in which the course 

leader first creates a course specification.  Once this document is complete, the workflow tools allow 

him to send a request to the Head of Department to review and approve it.  The Head of 

Department will receive an automated e-mail requesting that he log into the appropriate SharePoint 

site and do this; on completion of the work the workflow tools allow the sending of a response to 

the course leader approving or rejecting the documents and providing any appropriate comments.  

This cycle can be repeated until approval is received.  Once the Head of Department has given this 

approval then, and only then, does the workflow allow the course leader to ask the external 

examiner, via another automated e-mail, to log in and likewise accept or reject the documents. 

In a CLIF-enabled world, the workflow would ultimately allow a final stage in which, with all 

approvals in place, a copy of the programme of study could be made available in the institutional 

repository.  This would involve taking a copy of the approved document, using it as the basis for 

creating a digital object in the Fedora repository and additionally populating that object with 

appropriate metadata.  The metadata would potentially cover a range of areas: metadata about the 

content of the document; technical metadata about the document file; metadata about any security 

considerations; metadata relating the document to other, similar, documents in the repository; 

metadata describing the history of the content within SharePoint; and so on.  This last, metadata 

describing the object history, will be an important element in providing provenance information. 

Thus the CLIF Project hopes to provide additional software which allows a SharePoint user to add 

this repository submission stage into a normal SharePoint workflow and to do so in such a way that 

the tool appears as an integral part of the SharePoint web interface. 

Conversely, we hope to provide the reverse functionality; the ability to take a copy of digital content 

in the Fedora repository into the SharePoint environment in order to contribute to a workflow in 

some way. 

 



CLIF technical design  - 13 -     

3.3 Sakai 

3.3.1 About Sakai 

To quote from the Sakai Foundation’s web site: 

“Leading educational institutions throughout the world choose Sakai to enable powerful teaching 

and learning and research collaboration. Depending on where you are in the world, Sakai might be 

called a Course Management System (CMS), a Virtual Learning Environment (VLE) or Learning 

Management System (LMS). While Sakai is typically used for teaching and learning (similar to 

products like Blackboard and Moodle) we call it a Collaboration and Learning Environment (CLE) 

because it embraces uses beyond the classroom.”  Omitted from the list is its use in a number of UK 

institutions as a Virtual Research Environment (VRE). 

Within the Sakai environment is provided a ‘resources’ area where the members of a collaboration, 

of whatever sort – learning, research or other – can share a range of useful materials.  In an HE 

environment it seems reasonable to assume that some such resources might exist within an 

institutional repository.  One solution, of course, is to copy a resource from the repository into a 

particular resources area.  A more general solution might be to make the repository, or part of it, 

appear in the Sakai resources tool alongside resources specific to that Sakai collaboration.  Alongside 

this one can see merit in being able to transfer a Sakai resource to the repository in order to be more 

generally available, or to transfer a copy of a resource from the repository to Sakai – perhaps so that 

it can be used in a customised form. 

Thus, the aim of the CLIF Project is to enable such functionalities within Sakai in an integrated 

fashion. 

3.3.2 CTREP 

A previous JISC funded project, CTREP,10 sought as part of its work to integrate the Sakai resource 

tool with a Fedora repository.  It seemed appropriate that CLIF’s initial work with Sakai should seek 

to evaluate this legacy codebase and to determine whether it offered a starting point for our own 

work or whether a different approach should be taken. 

3.3.3 The Sakai resources tool 

The resources tool offered by Sakai allows an appropriately authorised user to create a tree 

structure of resources, providing functionality via a drop-down menu to 

 upload files (to the current folder) 

 create sub-folders (within the current folder) 

 add web links 

 add a citation list 

 create an HTML page, or 

 create a text document 

At the individual resource level functionality exits to 

 copy 

                                                           
10 See:  https://camtools.cam.ac.uk/access/wiki/site/jisc-ctrep/home.html 

https://camtools.cam.ac.uk/access/wiki/site/jisc-ctrep/home.html


CLIF technical design  - 14 -     

 edit details 

 upload new version 

 move 

 remove, or 

 duplicate 

The initial plan is that CLIF should add functionality to the first group to 

 add repository as folder (within the current folder) 

 remove repository from folder 

and add to the second group as applied to a repository object 

 download content (to containing folder) 

and as applied to a non-repository object 

 upload to repository 

Further refinement of these functions may take place if and when the initial functionality is 

established. 

 

 

4. Integration investigation  
A great deal of discussion has taken place around the twin challenges of how to integrate Fedora 

with Sakai and SharePoint.  In the end we have followed the ‘KISS principle’ (Keep it simple, Stupid!) 

and tried to develop software that will be easily deployed by other potential users and which has 

few necessary dependencies.  Two discarded approaches should perhaps be mentioned in this 

introduction. 

We noted at quite an early point in our deliberations that Fedora apparently has the ability to import 

METS packages and wondered whether we could use METS as a transfer format between our pieces 

of software.  If so, our logic went, then potentially any software that could import or export METS 

packages should be easily adaptable to the CLIF approach.  Further research revealed that Fedora 

uses a rather heavily customised form of METS and that “arbitrary METS files will not necessarily be 

meaningful” *to Fedora+.11  Whilst the possibility of working with XSLT transforms might have 

allowed us some success with the METS idea, we felt that we were straying too far from the 

simplicity that we had hoped for.   

The JISC-funded SWORD (Simple Web-service offering Repository Deposit) Project has developed a 

“lightweight protocol for depositing content from one location to another”12 which can be used to 

deposit content into Fedora.  In its relatively short lifetime SWORD has attracted many adherents.  

                                                           
11 Thornton Staples, Director of the Fedora Project; in litt 2010-04-09 
12 See the SWORD website at: http://www.swordapp.org/ 

http://www.swordapp.org/


CLIF technical design  - 15 -     

However we rejected its use as a deposit mechanism in CLIF for two reasons.  Firstly, it is what it says 

“on the tin”.  It is a deposit mechanism and, at the time of writing, has no mirror functionality to 

fetch content from a repository – a necessary component of CLIF.  In addition, when an object is 

deposited using SWORD the returns from the software are not currently very helpful in terms of 

feeding back useful information for the user (be that user machine or human); work is apparently in 

hand to improve this aspect of the tool. 

At the time of writing, therefore, we are producing a system that creates a FOXML file as the transfer 

vehicle.  In the near future we may evaluate the possibility of using OSIDs (Open Service Interface 

Definitions) as a transfer mechanism between Sakai and Fedora. 

It is not the intention of CLIF to create Fedora objects from within SharePoint or Sakai “just” so that 

they can go into a Fedora repository.  CLIF addresses the idea of a content lifecycle and so, in 

creating Fedora objects, we have tried to look beyond immediate and obvious needs to consider 

longer-term functionality.  To that end, objects created in Fedora will contain metadata datastreams 

that record, for instance, contextual information about the original SharePoint or Sakai object, 

technical information derived from JHOVE,13 preservation information derived from DROID,14 and 

other such information that might prove useful at other points in the life of the material. 

Finally we should note that our proposed development does not involve the use of an Enterprise 

Service Bus (ESB), a possibility raised in the initial Project Proposal.  The ESB consideration is dealt 

with more fully at section 5. 

 

4.1 SharePoint-Fedora integration 

4.1.1 Overview 

The two basic requirements for the SharePoint-Fedora integration are to deposit content items and 

associated metadata from SharePoint to Fedora, and to search, browse and retrieve items stored in 

Fedora from the SharePoint user interface.  

A first mechanism for deposit to Fedora will be achieved by manual interaction by the user. From a 

pull-down menu associated with a document in a ‘Document Workspace’, the user will be able 

manually to deposit items into the repository or a repository approval queue.  (It may not be 

desirable that a SharePoint user have the ability to create and expose an object to public view 

without a mediation and/or quality control step, hence the need for an approval queue.) 

Secondly, in order to achieve the objectives of CLIF in moving the repository upstream in the content 

lifecycle, a study was carried out with a view to enabling the Fedora deposit to be attached to key 

steps in the creation and approval of content. The natural way to implement this within SharePoint 

is to integrate the deposit with a SharePoint feature, which include both workflows and web parts.  

SharePoint workflows provide a mechanism to perform a structured sequence of tasks, which are 

typically performed by a predefined set of users. For example, workflows provide a convenient way 

to implement document approval processes.  

                                                           
13 JHOVE – the JSTOR/Harvard Object Validation Environment:  See: http://hul.harvard.edu/jhove/ 
14 See:  http://www.nationalarchives.gov.uk/aboutapps/pronom/  for information about DROID and PRONOM 

http://hul.harvard.edu/jhove/
http://www.nationalarchives.gov.uk/aboutapps/pronom/


CLIF technical design  - 16 -     

Web parts are the basic building block for web pages in SharePoint. A web part is a server control 

which is added to a web part zone on a web page at run time. The controls enable end users to 

modify the content, appearance, and behaviour of web pages directly from a browser. Web parts 

provide a convenient and flexible method to integrate data from multiple applications into a single 

web page. 

4.1.2 Scenarios 

In order to investigate the technical issues in the deposit of content items from a SharePoint to 

Fedora, four scenarios were defined and implemented. These scenarios provide technical challenges 

representative of the main use cases being considered in the CLIF project. 

1. Manual deposit to Fedora. 

• A user creates a document in SharePoint within a Document Workspace.  

• The user selects Copy to Fedora from the options in the pull-down menu associated to the 

content item. 

• The item is deposited to Fedora. 

2. Creation and approval of examination papers. 

• A lecturer creates draft documents (exam paper, solutions) in SharePoint. 

• The lecturer starts the workflow and completes the required submission form, entering 

privacy level, subject details, reviewer and approver details, exam date. 

• The reviewer receives an email notifying them of a task to review the document. The 

reviewer enters their comments and approves or rejects the documents. 

• If the document has been approved, the final approver receives an email notification of a 

review task. The final approver can either approve or reject the document. The final 

approver has the option of enabling deposit to the repository. If the document is approved, 

the Fedora deposit is initiated, and the documents and any metadata are transferred to the 

Fedora deposit queue. 

• If at either of the two review stages, the document is rejected, the lecturer receives an email 

notifying them of a task to modify and resubmit the document. 

3. Creation and approval of a policy document. 

• A committee secretary requests a new SharePoint site to host policy documents. 

• The SharePoint administrator creates a workflow to enable deposit from the SharePoint site 

to Fedora. 

• The secretary runs the workflow on a draft document, adding privacy settings, reviewers and 

approver names and retention period to the submission form. 

• As in scenario 1, iterative review tasks are completed by the reviewers and approvers. 



CLIF technical design  - 17 -     

• A PDF version is published to a public area in the repository. Audit trail, approval forms, and 

change logs for the document are archived within the Fedora object, but secured from 

public view. 

4. Environmental modelling calculation. 

• A researcher creates an Excel spreadsheet and stores it in a trusted location in a SharePoint 

document site.  

• The researcher opens the ‘Calculation’ web page and selects a data set to import into the 

spreadsheet using the web part controls. 

• The user runs the calculations and views the outputs. 

• The user elects to store the data in the repository. The user can enter additional information 

in a form. Once this form is submitted, the input and output datasets, the spreadsheet, and 

additional metadata are deposited to Fedora. 

4.1.3 SharePoint-Fedora deposit 

Figure 4.1 illustrates the steps required to implement scenario 1.  A “Copy to Fedora” option was 

implemented on the menu associated with each document in a ‘Document Workspace’. A Fedora 

object was then created containing basic metadata (Dublin Core), ingested to the repository via an 

object queue and there identified for mediation and/or quality assurance (QA). 

 

 

 

 

 

 

 

Figure 4.1 SharePoint-Fedora deposit from a user control in a Document Workspace 

The main steps required to implement scenarios 2 and 3 are illustrated in Figure 4.2. The most 

suitable SharePoint feature was the State Based Approval Workflow provided in the SharePoint SDK 

examples. This provides a two step approval process which is run on a selected document in a 

document workspace.   

The workflow allows an administrator or document author to select a reviewer and approved from 

the list of SharePoint users. When the workflow is run, the reviewer receives an email notification of 

a task to complete the review of the document. The reviewer has the option to enter comments and 

either approve or reject the document. If the document is approved, the approver then receives an 

email to notify them of the approval task, which is completed in a similar fashion to the reviewer. 

The approver can select whether the document is deposited to Fedora. If the document is approved, 

Fedora object creation 

Fedora ingest 

Object queue 

Document Workspace 

control 



CLIF technical design  - 18 -     

the Fedora deposit process is executed and the workflow is completed. If either the reviewer or the 

approver rejects the document, a task is created for the document author to revise the document. 

Once this is completed, the approval process can be repeated. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 SharePoint-Fedora deposit from a feature 

An API was defined to allow capture of the document within the workflow together with metadata 

associated with the workflow stored within SharePoint. This API is referred to as the feature 

interface. It includes capture of audit and workflow history information that is automatically logged 

within SharePoint as well as the user identities and comments entered by the reviewer and 

approver. SharePoint also provides the facility to capture multiple versions of the submitted 

document through the version control functionality. 

4.1.4 Metadata transformation 

Metadata transformation involves mapping of SharePoint metadata onto standard formats used in 

digital preservation such as Dublin Core and MODS. Simple conversions that are unlikely to need 

modification were carried out in software. An alternative for more complex transformations that 

may require change is to use an XSLT.  

At an early stage it was considered whether to implement the metadata transformation and object 

creation within Windows SharePoint Services (WSS) or to use Java middleware. There appear to be 

few differences between the approaches apart from the issue of possible code reuse from other 

related projects. In this case, it was decided to implement this step in C# within WSS.  

A further step that is required to assist in long-term preservation is document format conversion. 

For example, highly proprietary document formats such as Word may be converted to PDF format 

for deposit in the repository. Document conversion can be carried out either within Windows 

SharePoint Services using for example the open source Doc2Pdf software that integrates directly 

Fedora object creation 

Metadata transformation 

Fedora ingest 

 

SharePoint feature 

Feature interface 

Object queue 



CLIF technical design  - 19 -     

into SharePoint15, by calling an external converter as a service or by providing additional Java 

middleware to perform the conversion prior to ingest into Fedora. Conversion of documents within 

WSS would require load balancing and scheduling within the SharePoint server installation, for 

instance by providing a dedicated server for document transformations. 

4.1.5 Fedora object creation 

Fedora object creation is the process of creating the required XML files accepted by the Fedora API-

M services. The chosen ingest format was FOXML. The object creation includes the creation of the 

Fedora mandated DC datastream as well as the RELS-EXT datastream used by many repositories to 

define structures. Additionally, creation of audit trails and other application-specific datastreams is 

carried out. 

4.1.6 Authorisation and policy management 

In order to effectively manage authorisation within Fedora, creation of policy data streams was 

investigated. Fedora has adopted XACML as a policy language. This allows complex rules to be 

defined that limit access to raw objects, disseminators and web service APIs.  Fedora allows 

authorisation to be managed at the repository level, via repository wide XACML policy documents, 

or at the Fedora object level using a policy data stream included in each individual object. Repository 

wide policies are the simplest approach when there are a relatively small number of policy 

requirements across the repository. When there are widely differing requirements across document 

sub-collections, repository wide policies can become complex and increase response times in 

accessing documents.  Each request made to the repository requires validation by the XACML engine 

prior to execution.  

Since some Fedora repositories may be required to archive documents from multiple SharePoint 

sites with differing access requirements, creation of policy datastreams in each object will be 

investigated in addition to allowing the ‘repository wide’ approach. In order to reduce the 

complexity of maintaining a large number of policies, these policy datastreams will be configured to 

be externally referenced. In this way, Fedora objects with the same authorisation requirements (for 

example originating from the same SharePoint site) can share a single expression of the policy.   

Policies may be subject to change in the period that a document is retained in the repository.  

4.1.7 Object queue 

In order to decouple the Fedora ingest process from SharePoint, creation of an object queue was 

investigated. Fedora installations typically make use of the Apache ActiveMQ Java Messaging Service 

(JMS). The messaging service provides updates about the activities of the repository as they occur. A 

reference implementation of the Java messaging client is provided by DuraSpace.16 An alternative 

JMS that is being considered for use with Fedora is RabbitMQ.17 However, currently no 

documentation to support integration with Fedora is provided.  This object queue should not be 

confused with the approval queue mentioned in 4.1.1. 

4.1.8 Fedora ingest 

Fedora ingest is performed by calling the Fedora administrator web service API-M. For determining 

the locations of items in the repository, two separate use cases were identified. In the first case, 

                                                           
15 See:  http://docconverter.codeplex.com/ 
16 See:  http://www.fedora-commons.org/confluence/display/FCR30/Messaging 
17 See:  http://www.rabbitmq.com/ 

http://docconverter.codeplex.com/
http://www.fedora-commons.org/confluence/display/FCR30/Messaging
http://www.rabbitmq.com/


CLIF technical design  - 20 -     

Fedora objects are moved manually from an approval queue to a location in the repository. This task 

is performed by a librarian or curation specialist as part of QA and mediation work. In the second 

case, the Fedora objects would be routed automatically. The most logical form of automatic routing 

would be to organise the repository structure to mirror the site and site collection structure of 

SharePoint.  

For automated object ingest, the Fedora PID and RELS-EXT need to be generated prior to ingest into 

Fedora. The method under investigation is to provide an administrative tool to enable creation of a 

reference Fedora object for each new site collection or site created. In that way, any object 

deposited from a given site could be added to the relevant collection in Fedora. Fedora PIDs can be 

generated automatically by Fedora or generated by an external application prior to ingest. The most 

transparent method was to derive the Fedora PID from the URL of the corresponding item in 

SharePoint. This provides the additional advantage of making the PID human readable. 

Once a reference object has been created for a given SharePoint site, objects can be added to the 

corresponding Fedora sub-collection by adding a reference in the RELS-EXT data stream.    

4.1.9 Extensions of the basic scenarios 

For creating more general SharePoint-Fedora interface, a generic feature interface method will be 

developed that will allow any workflow or web part to be connected to the Fedora repository using 

the sequence of steps described in Figure 4.1. In the following work, we will aim to demonstrate 

how arbitrary workflows and web parts can be integrated with a minimum of coding. 

A further generalisation we have investigated is to allow the deposit of multiple documents in a 

single workflow. For example, the solutions for an exam document could be appended to a workflow 

running on the corresponding exam paper document, in order that both documents can be 

approved in a single workflow process. 

Scenario 3 illustrates the possibility of depositing multiple Fedora objects from single workflow, for 

instance to deposit the document into a public and a private areas of the repository. The private 

area would reference detailed metadata and an editable version of the document, whereas the 

public area would reference a non-editable PDF version. This can be achieved by executing the 

metadata transformation and object creation repeatedly with different parameters. Note that the 

documents themselves are typically stored in a separate file store, which is referenced by the Fedora 

object using the externally referenced configuration setting.   

For the fourth scenario, the main difference to scenarios 2 and 3 is the use of a web part as a front 

end to access the Fedora Excel web services.  In a similar way to scenarios 2 and 3, the feature 

interface is used to capture data from the web part, in this case an Excel spreadsheet, and deposit 

the document and metadata into Fedora.  

Web parts provide a convenient method for displaying content from other applications within a web 

page. In a similar way to workflows, it is possible to integrate the Fedora deposit functionality with 

the web part code. In the case of a web part, the deposit can be initiated from a user control in the 

web part, such as a button. 



CLIF technical design  - 21 -     

4.1.10 Fedora-SharePoint browse and retrieval 

In order to implement searching of the Fedora repository, indexing of the content is required. 

GSearch (the Fedora Generic Search Service) is the most common search service used with Fedora 

and this uses Lucene, or by extension, Solr. 

SharePoint provides an indexing service to enable search of content stored within SharePoint sites. 

The indexing service can also be extended to search external content. Since the use cases we have 

defined do not have a specific requirement to perform a federated search across both SharePoint 

and the Fedora repository, we have chosen to implement the indexing of Fedora independently from 

SharePoint. 

 

4.2 Sakai-Fedora integration 

4.2.1 Overview 

As noted in section 3.3.2, the CLIF team was aware of work undertaken by the Cambridge Tetra 

Repositories Enhancement Project (CTREP) and elected to use evaluation of this project as a starting 

point for Fedora-Sakai integration rather than re-invent the wheel. Specifically, we elected to 

investigate the Fedora component developed at the University of Highlands and Islands.  

The CTREP Fedora - CHH handler is an extension to the Sakai Resources Tool that provides a 

snapshot tree view of the hierarchical resources within a Fedora repository.  This is achieved through 

the Content Hosting Handler layer (developed by the CARET project) extension mechanism (a 

provider bean injected into the Sakai AXIS framework and a mount point file uploaded via the 

resources tool). Full two way editing is apparently implemented. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3  Diagram of Sakai Content Hosting Handler model 

Resources tool 

CHS API 

BaseContent Service 

DBContentService 

ContentHostingHandlerResolverImpl 

 

ContentHostingHandlerImplFedora 

 



CLIF technical design  - 22 -     

 

The structure of the Content Hosting Service is a BaseContentService, that implements the API, and 

then an extension class that specializes the BaseContentService  

CLIF’s work uses Sakai 2.6.1 and Kernel 1.0.12.  These were deemed the most suitable stable 

releases available at the time the CLIF project began. 

Because the CTREP code was built against earlier versions of Sakai, some problems were 

encountered when using the MAVEN build tool (some hand editing of CTREP POM files was required 

to add some additional jar dependencies and to change the deployment target version). 

4.2.2 Interface Description 

The CHH Fedora handler communicates with the Fedora system using two SOAP web service APIs 

already within Fedora; API-A and API-M. The CHH Fedora handler source code makes use of a Guanxi 

HTTPs transport layer to communicate with Fedora. This requires Java keystore (JKS certificate) 

security setting up on both client and server and makes it difficult to debug in a development 

environment as all SOAP  messaging traffic is encrypted.  After some initial problems  setting up the 

system it was found to work acceptably (albeit very slowly). It was decided to replace this layer with 

the more basic HTTP protocol  not only in order to try and boost performance but to facilitate easier 

debugging. There is also questionable benefit in securing the connection between Fedora and Sakai 

as both servers are likely to be on the same security partitioned part of a campus network anyway 

and HTTPs does require more server processing cycles than HTTP. 

4.2.3 Performance Improvements 

Quite early on it was apparent that the speed of rendering of resources from the Fedora repository 

within the Sakai resources tool was very poor (over a minute to render a dozen or so resources 

within the Fedora repository). The following code re-working has been done so far to alleviate this 

(mainly in and around FedoraDigitalRepositoryImpl.java): 

1. Refactor direct calls to web service method as persisted properties (populate multiple 

properties from one web service method call) 

2. No pre-fetch of content datastream for each resource. 

3. Caching of resources 

4.2.3.1 Refactor direct calls to web service method as persisted properties (populate 

multiple properties from one web service method call) 

Methods  isInCollection(DigitalItemInfo item) and isCollection(DigitalItemInfo item) both made 

two direct SOAP webservice API calls (approx 3 seconds duration each) and these were used ad-

hoc throughout the code wherever these 'properties' of a particular resource were required. The 

code was re-factored to add two new methods on class DigitalItemInfo, namely isCollection() 

and isInCollection() and to populate these once on the initial fetch of all top level resources. 

4.2.3.2 No pre-fetch of content datastream  

The content stream (as well as the metadata streams) of each resource returned from the 

Fedora resources query would be fetched from Fedora in order to populate the binaryContent 

and Size properties on each Sakai DigitalItemInfo object. This is very wasteful of server memory  

( especially since only a few of the potentially large number of resources are ever likely to be 



CLIF technical design  - 23 -     

opened to view the actual content). So after some thought, it was decided to adopt a 'just-in-

time' read methodology. Instead of pre-fetching the content datastreams, the binaryContent 

buffer would be left empty until actually required. The contentLength property was obtained via 

an alternative API method which only returned basic object metadata. However a bug in Fedora 

meant that this size (when populated) was always returned as zero for Fedora ‘managed’ 

datastreams (issue FCREPO-64). This is scheduled to be resolved in the near future (Fedora 3.4 

release). However, an interim fix was made to the Sakai kernel whereby should the CHH-handler 

return zero length the content is streamed initially to determine its size (which ends up in the 

HTTP Content-Length header) before streaming again to the user (streaming twice means that a 

small buffer size can be used saving server memory).  This may be a better long-term solution to 

the problem anyway, because Fedora does not provide for returning the filesize of ‘external’ 

content which is the way that many, if not most, Fedora repositories store content. 

4.2.3.3 Caching of Resources 

A software cache was implemented to store resources fetched during their initial retrieval. 

Subsequent revisits or refreshes of the Resources Tool Page reads resources from the cache 

rather than from Fedora via web services. This then makes speed of rendering only a potential  

issue after the initial fetching of resources. With a reasonable Fedora content collection 

structure in place it is hoped the number of resources returned will be manageable. 

4.2.3.4 Kernel Alterations 

Because of the move to a 'just-in-time' read design a change was made to the 

org.sakaiproject.content.impl .BaseContentService handleAccessResource method to handle 

resources with a reported 0 size (see previous explanation on this). This modification causes a 

default buffer size to be allocated, and the content datastream to be read an additional time in 

order to determine the size of the content (required by the 

HttpServletResponse.setContentLength method). 

 

4.2.4 Authentication / Authorisation 

CHH-Fedora authenticates all web service requests using the user credentials specified in the 

mountpoint.properties file. In order to restrict which Fedora objects a particular user can access / 

modify the following approach is likely to be adopted. 

At Hull, Sakai user accounts and Fedora users account ids are identical and CAS authentication is 

used to authorize access. Dealing with access rights on a user's objects then boils down to : 

4.2.4.1 Resource object creation / modification Implementation Strategy 

Determine / create unique top level root collection per Sakai user  with a known 

namespace:PID (e.g. at hull this would be hull-private:nnnnn where nnnnn is a numeric PID 

created the very first time a particular user uploads  a new object). 

In the RELS-EXT datastream for the object, set parent relationship to point at the user's root 

object above. Set the ownerId of the object to be the user's Sakai account Id. In the DC 

datastream for the object set the <dc:title> = user's AccountId and the <dc:description> to 

something searchable in a Fedora search query e.g. 'user root collection'. 



CLIF technical design  - 24 -     

4.2.4.2 Resource listing / display Implementation Strategy 

Using the Fedora Search API issue a query for the user's private root collection PID and any 

other top level public access collections which have been included in the sakai configuration. 

The query results will then be displayed as one or more collection folders. A user selecting 

one of these folders will cause Fedora to isssue a query for all objects (including possible 

sub-folder objects) with RELS-EXT isMemberOf the selected collection. 

4.2.5 Content Formats 

The CTREP code at present adopts a fairly generic version of Fedora FOXML 1.0 for its content 

format.  In due course, CLIF will switch this to the current FOXML 1.1 format and implement Hydra 

content models as standard. 

 

5. Enterprise architecture modelling: Enterprise Service Buses (ESBs) 
The CLIF Project Proposal and the subsequent Project Plan promised “Integrations between systems 

can be carried out using point-to-point techniques according to specific need.  Whilst a loosely 

coupled approach to point-to-point can enable wider adoption of a solution, such solutions can also 

be limited by the systems themselves as they change over time.  Enterprise Service Buses are an 

approach to abstract out the ways that systems can communicate with each other, protecting 

integrations against software changes.  This final piece of review work will specifically examine 

available options for using an ESB-approach to inform subsequent technical development.” 

This is an appropriate juncture at which to consider that review. 

To take a phrase from the book The Definitive Guide to SOA: Oracle Service Bus18, “Enterprise service 

buses (ESBs) are all the rage in modern software development.”  And whilst they are no more the 

silver bullet to solve all problems than were XML or web services (capitalised or not) they clearly 

help to address a particular set of problems.  The intent for the CLIF project of reviewing ESBs was to 

ascertain whether the problems we faced in integrating Fedora with SharePoint and Sakai are a set 

that could be aided by taking an ESB approach. 

The problem space that CLIF has set out to investigate is built on a generic principle about the ability 

to manage the digital content lifecycle across different systems, so that each can be used to its best 

advantage in supporting different stages of the lifecycle.  The focused implementation of that 

problem space for CLIF is how content can be moved between SharePoint and Sakai, as two user-

facing systems used to manage digital content for different purposes, and Fedora, as a repository 

system that can support digital content management.  The degree to which an ESB is of value needs 

to be considered at these two levels of scope, and may have different outcomes. 

As mentioned in the CLIF Project Proposal, specific needs for integration can be carried out via a 

point-to-point approach.  When there are only a small number of systems involved in the 

integration, and for CLIF we are limiting ourselves to three, this is likely to be the most 

straightforward way of achieving integration, and meet specific requirements.  ESBs originated in 

                                                           
18

 Davies, Jeff, Schorow, David, Ray, Samrat and Rieber, David (2008). The Definitive Guide to SOA: Oracle Service Bus, 2
nd

 
ed.Springer-Verlag, New York. 



CLIF technical design  - 25 -     

response to the need to avoid multiple point-to-point integrations, as the point-to-point approach, 

whilst clearly useful in specific instances, does not scale well.  In the context of the CLIF problem 

space, then, does an ESB have the right characteristics to merit moving away from a point-to-point 

approach? 

5.1 Characteristics of ESBs 
Loose coupling: By abstracting out the ways the systems communicate with each other the coupling 

between them is loosened.  Their location is also transparent, with any one system not needing to 

know where the other systems are.  This allows for client systems in the overall architecture to be 

replaced or amended without having a major knock-on effect in how they communicate, useful as 

upgrades take place or individual systems become obsolete. 

Mediation: An ESB is designed to serve the client systems it is being used by.  Hence, when a client 

system makes a call to the ESB this may result in a number of actions taking place depending on the 

services the ESB offers and the content of the message sent by the client.  Getting the ESB to do the 

hard work behind the scenes on behalf of the client allows this to focus on what it is there for. 

Service aggregation/orchestration: As part of carrying out actions for the client system an ESB may 

aggregate and/or orchestrate these to enable them to occur in a particular sequence and according 

to some conditional logic. 

Load balancing/monitoring: An ESB can both monitor and adjust the way messages from client 

systems are dealt with, and be monitored, to ensure that the ESB is carrying out its role effectively. 

For all these characteristics the ESB is adding value to the way systems communicate and work 

together.  The individual client systems could carry out these roles through point-to-point 

integrations separately.  Where each client system is doing the same tasks on multiple occasions, 

though, there is a lot of sense in getting a common layer to do this work instead. 

By contrast, ESBs also have a number of disadvantages: 

They work best where there is an associated enterprise model, requiring a full understanding of the 

overall model for how the systems will work together.  Whilst of benefit in itself generating this can 

be a complex task of its own. 

They can result in extra overhead and increased latency caused by messages having to be processed 

by the extra ESB architectural layer. 

In other words, ESBs require effort to implement, and the work required for this plus accounting for 

the impact of the overall architecture on performance needs to be balanced against the benefits the 

characteristics bring and enable. 

5.2 ESB versus messaging 
A key element of an ESB is the messaging, the ability to receive messages, route them, manage 

them, and carry out the tasks requested by the messages.  There are a number of messaging 

standards available, for example, Java Messaging Service (JMS), and a number of implementations of 

this standard, for example Apache ActiveMQ, which is used by Fedora.  As the introduction of an ESB 

is largely concerned with improving the communication of messages between systems, it is 



CLIF technical design  - 26 -     

beneficial in considering an ESB to assess what the difference is between the messaging 

implementations on their own and an ESB. 

The Apache ActiveMQ website contrasts this messaging implementation with Mule19, a widely used 

open source ESB.  Mule offers a programming model to support integrations.  In focusing on this 

Mule maintains the ability to make use of separate messaging capability, and hence can be used 

with ActiveMQ.  The model that Mule offers, though, extends what can be achieved simply by 

messaging, including orchestration and full web services support.  It thus puts into practice a number 

of the ESB characteristics indicated above. 

ActiveMQ, in contrast, is purely focused on enabling messaging between systems.  Having a clear 

model for how messaging on its own can support system integration, though, introduces a degree of 

abstraction that helps to achieve the first of the characteristics listed above, loose coupling to some 

extent.  Hence, whilst an ESB can provide clear advantages and functionality if the effort to 

implement it can be achieved, there may be potential for using messaging in a more lightweight 

way. 

5.3 ESBs and CLIF 
An initial analysis of the potential role of ESBs within the CLIF project appeared to offer considerable 

advantages.  A stated aim of the project is to enable its outputs to be as usable by others as possible.  

The three systems being investigated by the project are quite different, and developing point-to-

point integrations seemed to offer useful if limited scope for others beyond the project.  Hence, 

having an abstract layer through which messages, including content, could be transferred between 

the systems offers much. 

In reality, though, a number of factors have led us away from overt use of an ESB within CLIF.  At 

both partner sites the three systems being investigated represent only a proportion of the system 

environment across the Universities overall.  Hence, instigating an enterprise model to inform the 

implementation of an ESB was considered unfeasible.  Whilst it would be possible to develop an 

enterprise model on a limited basis, the need to enable the outputs from the project to be used 

beyond the project affected the capacity to which such a limited model could be used over time.  

The specific needs of managing integrations between the component systems are also factors in 

considering the merits of using an ESB. 

5.3.1 Fedora – Sakai 

CLIF has picked up the original work of the CTREP project to further the development of code that 

seeks to embed Fedora within Sakai as the default content store.  This approach to moving content 

between the two systems makes extensive use of the Sakai Content Host Handler.  There have been 

instances of where Sakai has been used in tandem with an enterprise ESB, though this has not been 

widespread.  The existence of the CTREP code has made it sensible to pursue this particular point-to-

point integration, albeit one that is flexible to other installations of Fedora and Sakai. 

5.3.2 Fedora – SharePoint 

The integration between Fedora and SharePoint has raised a number of challenges, discussed 

elsewhere in this document.  The different technical origins of the two systems both suggests and 

                                                           
19

 How does ActiveMQ compare to Mule, http://activemq.apache.org/how-does-activemq-compare-to-mule.html  

http://activemq.apache.org/how-does-activemq-compare-to-mule.html


CLIF technical design  - 27 -     

resists the use of an ESB.  On the one hand, integrating a Microsoft and Java system using an 

abstracted layer to carry out the communication seems very sensible: in contrast, finding an 

implementation of an ESB that can work in this environment, whilst feasible, poses its own 

challenges.  Investigations have highlighted the potential benefit of using messaging between the 

two systems, though, and for this ActiveMQ is being explored more fully. 

 

5.4 ESBs and the digital content lifecycle 
Notwithstanding the specific issues of whether an ESB could, or should, be used for the CLIF project, 

there remains the broader scope of whether an ESB can assist with the management of the digital 

content lifecycle across different systems.  In this respect there is much that is in favour of using an 

ESB.  Abstracting the communication suggests that whenever content should be moved from one 

stage/system to another the ESB can mediate this: likewise actions on content as part of its lifecycle 

could be carried out via the ESB to minimise the impact on the hosting system.  An ESB could be 

considered the common thread that encompasses and supports all stages of the content lifecycle. 

To consider the characteristics of an ESB in the context of the digital content lifecycle: 

Loose coupling: As content moves between systems it is reasonable to assume that new and/or 

different systems could be introduced into the system environment being managed.  As such, loosely 

coupling the systems to allow for changes via an ESB would have clear benefits. 

Mediation: The degree to which mediation would be of benefit in serving the client systems involved 

in the digital content lifecycle will depend on the use cases involved and the specific actions required 

in the lifecycle management.  Simple use cases would not necessarily benefit from adding any ESB 

complexity, whereas complex use cases involving actions to the content may benefit from having a 

system mediate these.  The BPEL processes used in the REMAP project enabled such mediation 

without being a full ESB implementation. 

Service aggregation/orchestration: Similarly, BPEL was used to orchestrate a number of services 

acting upon content being moved from a private to a public repository within REMAP.  Where a 

sequence of actions is required orchestrating of those actions is necessary. 

Load balancing/monitoring: The ability of an ESB to monitor processes and be monitored offers a 

mechanism to manage the digital content lifecycle as an entity rather than as a series of stages. 

5.5 Conclusions 
Whilst noting the clear potential for using an ESB to support the digital content lifecycle, the 

practicalities of the systems integration within the system environments of the partner sites have led 

to the conclusion that implementing an ESB for the purposes of the CLIF project is not realistic.  

Notwithstanding this there are elements of an ESB that could clearly prove of benefit to the work of 

the CLIF project, notably messaging.  As such, the use of a messaging broker, ActiveMQ, will be 

investigated with a view to identifying both its benefits and its potential for supporting future 

integration of the CLIF outputs with a wider ESB environment where this is practically feasible. 

 



CLIF technical design  - 28 -     

 

6. Technical architecture 

 

 

The diagram shows the proposed architecture (as at June 2010) for the CLIF Project.  Note that both 

the SharePoint and Sakai systems have the ability to call upon external services such as JHOVE or 

DROID to provide additional metadata for inclusion in a Fedora object. 

7. Acronyms and abbreviations 
 

API Application Programming Interface 

API-A The Fedora access API 

API-M The Fedora management API 

CLIF Content Lifecycle Integration Framework 

CMA Content Model Architecture (a Fedora term) 

CMS Content Management System 

CTREP Cambridge Tetra Repositories Enhancement 
Project 

DC Dublin Core – a particular form of metadata 

ESB Enterprise Service Bus 

Fedora Flexible, extensible, digital object repository 



CLIF technical design  - 29 -     

architecture 

FOXML Fedora Object XML – a form of XML used for encoding 
Fedora repository objects 

HEI Higher Education Institution 

HTTP Hypertext Transfer Protocol 

JISC The Joint Information Systems Committee 

JMS Java Messaging Service 

LMS Learning Management System 

METS Metadata Encoding and Transmission Standard 

MIME (-type) Multipurpose Internet Mail Extension 

MOSS Microsoft Office SharePoint Server 

PDF Portable Document Format 

PID Persistent Identifier 

QA Quality assurance 

RELS-EXT A Fedora object reserved datastream for dealing 
with external relationships 

REST Representational State Transfer 

SOAP Simple Object Access Protocol – although use of 
this expansion is now depracated 

SWORD Simple Web-service Offering Repository Deposit 

URI Universal Resource Indicator 

URL Universal Resource Locator 

VLE Virtual Learning Environment 

VRE Virtual Research Environment 

WSS Windows SharePoint Services 

XACML Extensible Access Control Markup Language 

XML Extensible Markup Language 

XSLT Extensible Stylesheet Lanmguage 
Transformations 

 

 

 

 


