
 

 

Section 8:  Electromagnetism 

 
 

Section 7 included, among other things, an account of gravitational forces 
according to the classical Newtonian theory.  This is the theory which says 

that any pair of objects will be attracted towards one another with forces 
proportional to the product of their masses and to the inverse square of 

the distance between them. 
 

This section is devoted to forces which have many similarities with 
gravitation, namely electrical and magnetic forces.  Electrical and 

magnetic forces are together known as "electromagnetic" forces because 
they are closely interconnected.  

 

 
8.1 Electric Charges; Coulomb’s Law 

 

It has been known for a very long time that, when different materials are 
rubbed together, "electrical" phenomena may be produced.  Sometimes 

objects will be made to stick together. Sometimes, they will repel one 
another.   

 
This can be understood by imagining that "electricity" can be transferred 

from one material to another by friction.  One thing gains electricity while 
the other loses it.  In other words, one gains positive electrical charge and 

the other gains negative electrical charge.   
 

Experiment shows that two positively-charged objects will repel one 
another.  So will two negatively-charged objects.  But if one object is 

positive and the other is negative, then there will be an attraction 

between them. 
 

 
 

 
Negative and positive signs were allocated to these charges quite 

arbitrarily in the early days of electricity.  If you rub ebonite (a form of 
plastic, made from rubber) with fur, the ebonite acquires a negative 

charge.  But if you rub glass with silk, the glass gains a positive charge.  
Nowadays this explained by the theory that matter consists of atoms with 

heavy positive nuclei and much lighter electrons.  In many materials, the 
electrons are connected to the nuclei only very loosely and, under the 

right circumstances, can be made to move about.  When two objects are 
given electric charges by friction, it just means that electrons are 

transferred from one to the other.  Electrons are negatively charged (and 

atomic nuclei are positively charged) so an object which gains electrons 

Like charges repel.  Unlike charges attract. 



 

 

becomes negatively charged, whereas an object which loses electrons 

becomes positively charged.  In an uncharged object, the positive charges 
of the atomic nuclei are exactly balanced by the negative charges of the 

surrounding electrons.  In a charged object, there is an imbalance, with 
either too many or too few electrons compared with the positive charges 

of the nuclei of the atoms. 
 

In reality, therefore, a positive charge is a shortage of electrons and a 
negative charge is a surplus of them.  And, since it is the electrons which 

are mobile, and not the atomic nuclei, a movement of charge in any 
ordinary material is actually a movement of electrons.   

 
Different substances have different properties.  In some, the electrons are 

tightly bound to the atomic nuclei or to the molecular structure and are 
difficult to move.  In others, the electrons can drift about fairly freely.  In 

a case where the electrons do not move, the substance is called an 

"insulator".  In a case where the electrons are mobile, the substance is 
called a "conductor".   

 
Electric charge is measured in units of coulombs (abbreviation C).  The 

greater the charge, the greater the attraction or repulsion will be.   
 

Incidentally, the unit of charge (coulomb) is related to the unit of electric 
current (ampere) because an ampere is a flow of one coulomb per 

second.  For historical reasons the unit of current, not of charge, is taken 
to be a "base" unit in the SI system, alongside mass, length and time.  

So, a coulomb could be expressed as an "ampere-second" (A s) in base 
units.    

 
Every electron has exactly the same electric charge.  Electrons do not 

differ from one another, not even in the slightest.  This fact is a deep 

mystery.  The quantity of charge carried by an electron is -1.6 x 10-19 

coulomb, the minus sign representing the fact that an electron's charge is 

regarded as negative.   The magnitude of this charge is often represented 
by the letter e. 

 
 

 
 

 
 

Electric charges arise (in almost all cases) because an object has lost or 
gained a number of electrons, so all electric charges are integral multiples 

of e.  It can be said that electric charge is “quantised”, and that e is the 
“quantum” of electric charge. 

 

e  =  1.6 x 10-19 coulomb 



 

 

Like charges repel.  Unlike charges attract.  The force of repulsion or 

attraction is present regardless of how far apart the two charged objects 
are, but the further apart they are the weaker the force will be.  About 

two hundred years ago it was established that the force between two 
electrically charged objects follows the same mathematical rule as the 

gravitational force between two heavy objects: it is inversely proportional 
to the square of the distance between them.   

 
So, if we have two objects with charges Q1 and Q2, and if they are a 

distance r apart, then the force pushing them apart obeys the equation 
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It is assumed here that the objects are very much smaller than the 

distance r, so that the shapes of the objects are not relevant.  In other 

words, the objects are imagined to be pointlike.  This equation is known 
as Coulomb's Law.  Notice that both of the charges Q1 and Q2 “feel” the 

force F.  It acts on Q1 in one direction and also on Q2 in the opposite 
direction.  This is in accord with Newton‟s Third Law of Motion, which 

states that, for every force within a system, there is also an equal and 
opposite force. 

 
Replacing the proportionality by an equality, we can write 
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where the factor (4πε)-1 is a constant analogous to the gravitational 

constant G which appears in Newton's Law of Gravitation.  The quantity ε 
is known as the "permittivity".  The above could be written as a vector 

equation: 

 

𝑭1    =    −𝑭2    =     −  
1

4𝜋𝜀
  
𝑄1𝑄2

  𝑟12 
3
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following the convention of using bold-font symbols for vectors.  Here, F1 

is the force on Q1, F2 is the force on Q2, and r12 is the displacement of Q2 
from Q1. 

 
However, the electrical force law differs from Newton's Law of Gravitation 

in a very important way.  While the gravitational constant G is a universal 
constant which always has the same value, the electrical permittivity ε 



 

 

varies depending on the material which is filling the space between the 

two charges Q1 and Q2.   
 

If there is no material at all between the charges, just empty space, then 
the permittivity has a special value, ε0, the "permittivity of free space".  

Since ε0 does not depend on the properties of any material substance, 
just on the nature of the universe, it is a fundamental constant.  In SI 

units it has a fixed value which is approximately equal to 
 

 
 

 
 

Do not be intimidated by the complicated units.  Here, the units of the 
permittivity are specified in terms of the "base units" of the SI system 

(mass, length, time and electric current).  We will see later that the units 

of permittivity can be expressed a bit more simply than that. 
 

Using the above value for ε0, the force equation previously given will yield 
the correct result in newtons if the charges Q1 and Q2 are in coulombs and 

if the distance r is in metres. 
 

 

Question 8a 
 
Suppose that two small objects both have electric charges of 1 μC.  If 
they are 1 metre apart, what is the electric force between them? (When 

you are asked any question of this kind, assume that the space between 
the objects is empty, i.e. is a vacuum, unless you are told otherwise.)  

 

Solution: use 
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putting in Q1  =  Q2  =  10-6, r = 1, and ε0 = 8.854 x 10-12 in the 

appropriate units.  The result is a force of 9 mN (millinewtons). 
 

 

Question 8b 
 

A proton (i.e. the nucleus of an ordinary hydrogen atom) has a mass of 
1.67 x 10-27 kilograms.  A proton has the same electric charge as an 

electron, but is positive instead of negative.  By what factor does the 
electrical force between two protons exceed the gravitational force 

between them?  To save you looking it up: Newton‟s gravitational 
constant G is equal to 6.67 x 10-11 m3 kg-1 s-2. 

ε0  =  8.854 . . . ×10−12  kg−1 m−3 s4 A2 



 

 

Solution: the formula for electrical force is 

 

𝐹𝑒  =   
1
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  .  
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and the formula for gravitational force is 

 

𝐹𝑔  =   𝐺  .  
𝑀1𝑀2

𝑟2
 

 
The charges Q1 and Q2 are both equal to the charge e given earlier, and 

the masses M1 and M2 are both equal to the proton mass (M, say).  So, 
the ratio of the two forces, at any distance r, is 

 

𝐹𝑒
𝐹𝑔

 =   
𝑒2

4𝜋𝜀0𝐺𝑀2
 

 

Putting in the numbers, this gives a factor of just over 12 x 1027.  It is 
because this is such an enormous ratio that gravitational forces can be 

entirely neglected in the context of atomic and nuclear forces. 
 

 

 

8.2 Electric Fields  
 
Equations have been given above for the force between two electrically-

charged pointlike objects.  But what happens if there are more than two 
objects, or if the electric charge is spread out over a region of space?  To 

be able to think about electric charges and electric forces in a general 
way, we need the concept of the electric “field”. 

 

At every point in space, the electric field gives the magnitude and 
direction of the electric force that would act on a small positive charge 

located at that point, if such a charge were present there.  To be precise: 
if a charge q were to be present on a pointlike particle at the location 

whose coordinates (x, y, z) form the vector r, and if the particle would 
then be acted on by an electric force F, then the ratio F/q is the “electric 

field” at r and is conventionally denoted by the letter E.  E is a vector 
because F is a vector.  The electric field E(r) is a vector-valued function of 

a vector variable, so it is mathematically rather a sophisticated thing.  
Moreover, it is defined in terms of something that does not exist – the 

imaginary pointlike positively-charged particle at the location r. 
 

Sometimes the electric field is described in terms of a “test particle of unit 
charge” imagined to be placed at the point in question: the electric field is 

defined as the electrical force which would act on a test particle of unit 



 

 

charge at the relevant point.  An electric field has the units of newtons 

per coulomb. 
 

An electric field surrounds any charged object.  From Coulomb's Law, as 
discussed above, a charge Q will exert a force F on another charge q, at a 

separation r from it, with 
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and since the electric field at that point is F/q, we can write 
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𝑄
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This expresses, mathematically, the fact that a small charged object by 
itself will produce all around it a radial electric field (in the direction of the 

separation r) whose magnitude is proportional to the charge Q on the 
object and to the inverse square of the distance r.   This electric field 

could be illustrated by a diagram like this: 

 
 

 
 
 
 
 
 
 
 

The lines follow the direction of the field at every point.  Field lines always 

start from where there is an electric charge, which is in the centre of the 
diagram in the above example.  The diagram above should be imagined in 

three dimensions with the field lines spreading out and becoming 
increasingly sparse as we go away from the central charge and the 

magnitude of the electric field falls away.   
  

 

 

   



 

 

If we had two charges side by side, one positive and the other negative, 

than we might have a situation like this: 
 

 
     

 
 
 
 
 
 
 
 
                      
 
 
 
 
 

but the combined result would actually be something like this: 
 
 
                      
 
 
 
 
 
 
 
 
 
           
What happens is that, at every point, the electric field is the vector sum 
of the field due to the positive charge and the field due to the negative 

charge.  Field lines flow from the positive charge to the negative charge.  
You can imagine the field lines as being almost like stretched elastic, 

pulling the positive and negative charges together. 
 

It is important to understand the role of the permittivity ε.  If there is just 
empty space between the charge Q and the point r, then the permittivity 

is just that of the vacuum, ε0, and we would have  
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However, if the intervening space is filled with some other medium, then 

the permittivity ε will have some other value greater than ε0.  For 

Electric Field Lines 

 

Electric field produced                                     Electric field produced  
by a positive charge                                          by a negative charge 

 

Force of attraction 



 

 

example, air has a permittivity ε which is greater than ε0 by a factor of 

1.0006.  The ratio ε/ε0 is known as the "relative permittivity".  The 
relative permittivity of air is 1.0006.  All materials have permittivities 

greater than that of the vacuum, so their relative permittivities are above 
1.  Some materials have relative permittivities which are considerably 

greater than 1: for example, glass has a relative permittivity of about 6 
and distilled water has a relative permittivity of 81.  Relative permittivity 

is often represented by the letter κ (Greek lower-case kappa). 
 

What is the significance of the relative permittivity?  Looking at the above 
equation, it can be seen that a high permittivity will reduce the electric 

field.  In other words, a high-permittivity material has the effect of 
partially screening the electric field.  Exactly how this happens depends 

on the atomic and molecular structure of the material, and need not 
concern us here.  What needs to be understood is simply that materials 

are not, so to speak, completely porous to electric fields, and in a high-

permittivity medium the power of an electric charge to produce an electric 
field will be proportionately reduced. 

 
In this respect, electrically conducting materials are in a class of their 

own.  A conductor, in effect, is a material with an extremely high 
permittivity.  Consequently, the power of an electric charge to create an 

electric field is quenched completely within a conductor.  Why?  One way 
of looking at it is to say that a conductor is a material in which electrons 

are highly mobile and therefore electric currents will pass with very little 
resistance.  So, if a particular distribution of charge creates an electric 

field within a conductor, a current will be made to flow, with the result 
that the charges will be redistributed until they balance out and the 

electric field therefore eliminated.   
 

If an isolated object made of a conducting material carries a net electric 

charge, then the self-repulsion of the charge will quickly spread it out 
over the surface of the material. 

 
Incidentally, because there can be no electric field inside a conductor, any 

equipment which is contained within a conducting surface will be shielded 
from any extraneous electric fields.  Or, to put it in another way, the 

super-high permittivity of a conductor will prevent any electric field from 
penetrating to equipment which is protected by a conducting box.  This is 

the principle of the "Faraday cage" used to shield sensitive electrical 
equipment.  It is not always necessary for the Faraday cage to be a 

completely closed: a mesh or cage made from conducting wires will give 
considerable protection.  

 
 

 

 



 

 

Charge distributed over a surface 

 
A configuration which it is important to understand is a uniform 

distribution of charge over a flat surface.  What sort of electric field is 
produced by such a distribution?  As a way of approaching this problem, 

imagine a conducting sphere of radius R, as shown below, with a positive 
charge Q is distributed evenly over the surface of the sphere.   

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

The surface area of the sphere is 4πR2, and so the charge density (per 
unit area) over its surface is given by 

 

𝜎 =   
𝑄

4𝜋𝑅2
 

 

Now think about the electric field at a point outside the sphere.  At a very 
large distance (r, say, ≫ R) away from the sphere, the sphere will seem 

very tiny, and its electric field cannot be significantly different from that of 
a point charge.  The field would therefore be  

 

𝐸  =    
𝑄

4𝜋𝜀𝑟2
    

 
As we go towards to the surface of the sphere, r → R, the formula will not 

change.  As long as we are outside the sphere, the field lines must look 
the same and there must be the same number of them whether the 

charge is smeared over the surface of the sphere or concentrated at its 
centre.   In fact the situation is analogous to that for the force of gravity, 

where any spherical object behaves as if its mass were concentrated at its 
centre.  The magnitude of the field very close to the surface of the sphere 

must therefore be   
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So, using the equation above for the charge density σ, it is clear that the 
electric field just above the surface of the sphere must be simply 

 

𝐸  =    
𝜎

𝜀
    

 
Now, there can be no difference between a spherical surface with a 

relatively very low curvature (i.e. a sphere as seen from a point very 

close to it) and a plane surface.  We conclude that the electric field just 
outside any flat distribution of charge σ (in coulombs per square metre) 

will be σ/ε (newtons per coulomb). 
 

But a word of warning is necessary: we have argued here that the electric 
field due to a plane distribution of charge (σ  C m-2)  has a magnitude 

equal to σ/ε.   But this is in circumstances where the electric field is 
produced only on one side of the plane.  As we will see later on, the 

magnitude of the electric field is only half of this (σ/2ε) if the field is 
emitted on both sides of the plane. 

 
 

Question 8c 
 
Four small electric charges, each of Q = 5  μC, are at the corners of a 
square whose sides are 0.1 metres in length.  What is the magnitude of 

the electrostatic force felt by each of the charges? 
 

Solution:  first we draw a diagram... 
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The force felt by the charge at the top left-hand corner is the vector sum 

of the forces (f1, f2 and f3, say) which it feels from the three other 
charges:  

𝐹   =    f1  +   f2  +   f3 
 

and each of those follows the inverse-square law: 
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Using the permittivity of empty space: 
 

𝜀0   =    8.854  × 10−12    𝑘𝑔−1 𝑚−3 𝑠4 𝐴2 
 

we find that the net force is in the opposite direction to  r2  and has 

magnitude 
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=   43 N 

 
 
8.2 Capacitance 
 
We are now equipped to consider the extremely important example of two 

similar parallel flat plates: 
 

 
 
 
 

 
 
 
                                
 
 
In this diagram, electric field lines are shown going from the upper plate 
(which carries a total charge Q) down to the lower plate (which carries a 

charge -Q.  As an element of an electrical circuit, this is what is called a 
"capacitor". 

 
As long as the size of each plate is much greater than the separation 

between them the diagram above will be a pretty accurate representation 

 +Q    

 -Q 



 

 

of how the electric field goes.  It must be perpendicular to the plates, and 

must be the same across the area of each plate, since the electric charge 
will spread itself out uniformly across the surface of each plate.  (There 

will be some "fringing" close to the edges of the capacitor, with the field 
bending out sideways a bit, but this effect will be negligible if the distance 

between the plates is relatively small.)  Since the electric field lines are 
parallel to one another, they do not diverge and therefore the electric 

field does not vary vertically between the plates.   
 

Suppose that the area of each plate is A and that the distance between 
them is d.  Then, the areal charge density on each plate has magnitude 

 

𝜎 =   𝑄/𝐴 
 

and so the electric field between the plates has a magnitude  
 

𝐸 =  
𝜎

𝜀
 =    

𝑄

𝐴𝜀
 

 
Now, imagine the change in energy involved when electric charge builds 

up on a capacitor.  When charge is transferred from one plate of the 
capacitor to the other, it is as if charge is moved against the force 

produced by the electric field E.  Work will have to be done on the charge, 
and it will acquire potential energy just as if it had been rolled up a steep 

hill.  This sort of potential energy, when expressed in joules per coulomb, 

is often termed "potential difference".  Actually, we don't have to use the 
phrase "joules per coulomb" because there is a special name for this unit: 

the volt (abbreviation V).  There is an electrical potential difference, in 
other words a voltage, between any two points in space, and it is equal to 

the energy that would have to be released or absorbed in order to move 1 
coulomb of charge from one of the points to the other. 

 
So, what is the electric potential energy difference between the plates of 

a capacitor?  The potential difference must be equal to the electric force 
on a unit of charge between the plates (which, by definition, is the electric 

field E) multiplied by the distance d that would be travelled between the 
two plates. 

 
This is because for any kind of force:  

 

 
 

 
And consequently 

𝑉 =   𝐸𝑑 
 

energy  =  force  x  distance 



 

 

(Confusingly, V is not only the abbreviation for the unit of voltage, the 

"volt", but it is also the letter conventionally used to represent a voltage 
when doing algebra.) 

 
Eliminating E between the last two equations, we can write  

 

𝑄  =    
𝐴𝜀

𝑑
  .  𝑉 

 

To look at it from another point of view: if the voltage V is imposed on the 

capacitor by an external electrical circuit connected to the two plates 
(using, say, a battery) then the voltage will cause the capacitor to be 

"charged up" with positive and negative charges ±Q which will be 

proportional to V according to the above equation.  For any particular 

capacitor, A, ε and d are constants, and if we define the "capacitance" of 
the capacitor to be the ratio 

𝐶 =   
𝑄

𝑉
 

 
then it follows that 

𝐶 =   
𝐴𝜀

𝑑
 

 

(Notice that we talk colloquially about the charge Q on a capacitor 
although in fact the capacitor has two charges, +Q and -Q, and the total 

charge on the whole capacitor is always therefore zero.)   
From the equations given earlier, the capacitance of a capacitor has the 

units of coulombs per volt, which is equivalent to kg−1 m−2 s4 A2 in SI 
base units.  The unit of capacitance is given a name of its own, the farad 

(abbreviation F) in memory of the physicist Michael Faraday.  In terms of 
farads, permittivity has units of farads per meter (F m-1).  Also, notice 

that electric field strength *"E") can be expressed as "volts per metre" (V 
m-1) as well as newtons per coulomb (N C-1) - they are equivalent ways of 

expressing the same base units of  kg m s−3 A−1. 
 

 

Question 8d 
 
Two parallel plates 3 mm apart gain a charge of 35 nC when connected to 

a 150V DC voltage supply. The effective cross-sectional-area of each plate 
is 144 x 10-4 m2.   Calculate the electric field strength between the plates. 

 
 

 
 

 



 

 

Solution:  Electric field strength E = V/d = 150/(3 x 10-3)   

    

= 50 000 V m-1  =  50 000 N C--1 

 

It does not matter whether we give the units as volts per metre or 

newtons per coulomb.  Both are correct.  It's just a shame that the unit of 
electric field strength doesn't have a special name of its own! 

 
 

Question 8e 
 
Two parallel  metal  plates of dimensions 0.25 m x 0.35 m are spaced 

4 mm apart. The plates receive a charge of 250 nC from a 220 V supply. 
Calculate the electric field strength. 

 
Answer:  55 kV m-1 
 
 

Question 8f 
 

A charge of 0.5 µC is carried on two rectangular plates of dimensions 60 

mm x 80 mm. The distance between the plates is 1 mm and a potential 

difference of 500 V is connected across the plates.   Calculate the 
capacitance, the permittivity and the relative permittivity. 

 
Solution:  The capacitance can be found from the charge and voltage 

with the formula C = Q/V. So, C = (0.5 x 10-6)/500 = 10-9 F or 1 nF.  
 

But the capacitance C = Aε/d, so ε = Cd/A = 10-9 x 10-3 / (4.8 x 10-3) = 

0.21 x 10-9  F m-1.  The relative permittivity ε/ε0 = (0.21 x 10-9)/( 8.85 x 

10-12) = 23.73. 
 

 
The energy in an electric field 

 
Imagine a parallel-plate capacitor being slowly charged up.  At first, there 

are no electric charges on the plates, but they build up to having charges 

of +Q and –Q.  Charge is steadily transferred from one plate to the other.  
Because there will be a potential difference between the two plates, work 

is done as the charge is transferred.  As far as the capacitor is concerned, 
it doesn‟t matter what sort of external circuitry is involved in this process, 

as long as the net effect is to transfer charge from one plate to the other. 
 

How much energy is involved in this process? When the charge on the 
capacitor is q, then the voltage V between the plates must be q/C, where 

C is the capacitance.  If that is the voltage, then the transfer of an extra 
bit of charge Δq must require an energy input of  VΔq = qΔq/C.  



 

 

This is analogous to what happens when we put energy into stretching a 

spring.  Hooke‟s Law says that there is a force F = kx in a spring which 
has been extended by a distance x.  So, when we increase x by another 

bit Δx, there is an extra energy input (force multiplied by distance) equal 
to kxΔx.  When the spring is extended to give a total extension of X, the 

energy stored in the spring is ½kX2.  This can be shown either by using 
calculus (integrating kxΔx) or by drawing a graph of the force as a 

function of x and using the fact that the energy must be the area under 
the graph.  In the case of the capacitor, the energy is ½Q2/C.  Since 

V=Q/C, this is equal to ½CV2, which is the usual formula for expressing 
the energy stored in a capacitor.   

 
So, a capacitor not only stores positive and negative electric charges, it 

also stores energy.  But where, exactly, is this mysterious energy?  The 
answer is that energy is inherent in an electric field, and the energy 

stored in a capacitor, ½CV2, is the energy of the electric field between the 

two plates. 
 

Now, as we have seen, the capacitance C is Aε/d and the voltage V is Ed.  
Using these formulae to replace C and V in the expression ½CV2, we can 

see that the energy stored in the capacitor is ½AdεE2.  But Ad is the 
volume of the space between the two plates.  Since the energy is stored 

in that volume, the energy density (in joules per cubic meter) must be is 
½AdεE2/Ad which is just ½εE2. 

 
So, the example of the parallel-plate capacitor has led us to the 

conclusion that an electric field E must have, associated with it, an energy 
density given by 

 
 

 

 
 

Question 8g 
 

The plates of a parallel plate capacitor each have an area  25 x 10-3 m2 

and are separated by an air gap of 5mm. The electric field strength 

between the plates is 70 kV m-1.  Calculate the capacitance of the 

capacitor and the energy stored by it. 
 

Answers:      44.25 x 10-12 F   and   2.71 x 10-6 J  
 

 

Question 8h 
 

Two parallel metal plates of area 0.8 m2 and separated by an air gap of 
thickness 1 mm have a voltage of 200 V connected across the plates.  

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑓𝑖𝑒𝑙𝑑 𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =   ½𝜀𝐸2 



 

 

Calculate (a) the capacitance, (b) the charge, and (c) the new value of 

capacitance and charge if the distance between the plates is halved.  (d) 
If the supply across the capacitor in part (c) above is now disconnected 

and the distance between the plates is then returned to its original value, 
what will be the new voltage difference across the plates? 

 
Solution: let the initial values of the capacitance, charge and voltage be 

C1, Q1 and V1, and let the initial separation of the plates be d1. 
 

(a) For air it is reasonably accurate to take ε=ε = 8.85 x 10-12 F/m. 

 The area A = 0.8 m2, d1 = 10-3 m, and V1 = 200 V. 

 So, the capacitance C1 = ε0A/d1 = 8.85 x 10-12 x 0.8 / 10-3  
 = 7.08 x 10-9 F 

 
(b) Charge Q1 = C1V1 = 7.08 x 10-9 x 200 = 1.416 μC 

 

(c) If the distance between the plates is halved, the capacitance will be 
doubled since capacitance is inversely proportional to the distance 

between the plates.  So, the new capacitance C2 = 2 x C1 = 14.16 x 
10-9 F or 14.16 nF. Also, the charge Q2 = C2V1, so if the capacitance is 

doubled and the voltage remains constant the charge must also 
double.  So, the new value of the charge Q2 = 2 x Q1 = 2.832 μC. 

 
(d) If the supply across the capacitor in part (c) above is now 

disconnected and the distance between the plates is then returned to 
its original value the capacitance will also return to its original value C1 

of 7.08 nF.  However, with the supply disconnected the capacitor 
cannot discharge, therefore the charge will remain at its new value 

(Q2) of 2.832 μC.  Therefore, the new voltage V2 = Q2/C1 = (2.832 x 
10-6)/(7.08 x 10-9) = 400 V.  So, the voltage has increased. This is 

possible because work has been done on the capacitor by moving the 

plates apart against the force of attraction between the plates. More 
energy has been put into the capacitor and., since voltage is joules 

per coulomb, the voltage must increase. 
 

 

Question 8i 
 
A 5 nF parallel-plate capacitor, with empty space between the plates, is 
charged by a set of batteries to 160 volts.  It is then disconnected from 

the batteries.  Then, it is submerged in distilled water.  The relative 
permittivity  (i.e. ε/ε0, or κ)  of distilled water is 80.   

 
(a) What is the capacitance of the now-water-filled capacitor? 

 
(b) What is now the voltage across the capacitor? 

 



 

 

(c) How much energy was stored in the capacitor before immersion? 

 
(d) How much energy is stored in the capacitor after its immersion in 

 the water? 
 

 
Solutions: 

 
(a) Capacitance  C = Aε/d,  where  A  is the area of the plates 

and  d  is their distance apart.  So, if the permittivity goes from ε0 
to a value 80 times greater, then  C  is multiplied by 80.  

The new capacitance is therefore  80 x 5  =  400  nF. 
 

(b) When the batteries are disconnected, the charges on the 
capacitor’s plates remain unchanged.  With no electrical circuit 

connecting them, there is nowhere for the charges to flow.  

However, the voltage between the plates may change if the 
configuration of the capacitor changes in any way.   

 
The voltage across a capacitor depends on the capacitance  C  and 

the charge  Q  according to the equation  V  =  Q/C.  So, if the 
capacitance  C  is multiplied by 80 while  Q  remains the same, the 

voltage  V  must fall by a factor of 80.  The voltage across the 
submerged capacitor is therefore  160/80  =  2  V. 

 
(c) The energy stored in by a capacitor is given by the 

formula  ½CV2  (or  ½Q2/C).  Out of water, using  C = 5 nF  and  V 
= 160 V, this gives  64 μJ. 

 
(d) In water, using  C = 400 nF  and V = 2 V, the energy 

 stored (½CV2) comes to  0.8 μJ.   

 
The energy stored in the capacitor has been reduced by a factor of 80 as 

a result of its immersion in water.  Where did the energy go? 
 

 

Question 8j 
 

A parallel-plate capacitor of capacitance  C  is connected via an electrical 
circuit to a battery which gives it a charge  Q.  The capacitor is then 

disconnected from the circuit. 
 

(a) In terms of C and Q, how much energy 
 (U, say) is stored in the capacitor? 

 
(b) The separation between the plates is now 

doubled.  How does the energy in the capacitor change? 



 

 

Solutions: 

 
(a) This just requires the standard formula  U = ½Q2/C.  For the 

answer to this first part of the question it does not actually matter 
whether the electrical circuit is connected or not. 

 
(b) Remember (or look up!) the fact that  C = Aε/d.  This means that 

 if the plate separation  d  is doubled, the capacitance  C  is halved.   
 

But the energy in the capacitor is  U = ½Q2/C, and the charge  Q  is 
unchanged (because, with the circuit disconnected, the charges on 

the plates cannot flow anywhere and have to stay where they are).  
So, with the capacitance  C  being halved, the energy  U  is 

doubled.   
 

If the energy  U  in the capacitor has been doubled as a result of the plate 

separation being doubled, where did that extra energy come from?  The 
answer is that the mechanical work done in pulling the plates apart is 

converted into the extra electrical energy in the capacitor. 
 

Now let‟s look at that problem again, but with a crucial change: this time 
the capacitor will not be disconnected from the circuit! So, the question 

is: 
 

Question 8k  
 
A parallel-plate capacitor of capacitance  C  is connected via an electrical 

circuit to a battery of voltage  V  which gives it a charge  Q.   
 

(a) How much energy is stored in the capacitor? 
 

(b) The separation between the plates is now doubled.  How does the 
 energy in the capacitor change? 

 
 

Solutions: 
 

(a) It is still true to say that the energy  U  in the capacitor is ½Q2/C.   

 
(b) However, as the plates are pulled apart both  Q  and   C  will 

 change.  So, it is best to eliminate  Q  (using C = Q/V) to give 
 U = ½CV2.   Then, use  C = Aε/d  to reach   

 
U = AεV2/2d 

 
 With the energy in the capacitor being expressed in this 

form, it is obvious that by doubling  d  we will halve U.   



 

 

 

So, when you double the separation of the plates of a charged 
capacitor, you will double the energy stored if the capacitor is 

disconnected (constant Q) but you will halve the energy stored if 
the capacitor stays connected to the battery (constant V)! 

 
But now we have another little puzzle.  In this case, with the capacitor left 

connected to the battery, increasing the plate separation decreases the 
energy in the capacitor.  But mechanical work is still being done when we 

pull the plates apart.  Where is that mechanical work going?  And where is 
the electrical energy from the capacitor going?  The answer is: into the 

battery.  As we pull the plates apart, we charge the battery up! 
 

 
The force between the plates of a capacitor 

 

Consider now a parallel-plate capacitor which has its plates separated by 
a distance d.  If its capacitance is C, and there is a charge Q on the 

capacitor, what is the force between the plates? 
 

To answer this question, we must first understand the following: 
 

 
 

 
 

 
 

 
 

 

The phrase “if the charge at A were not present” is crucial.  (In fact, if the 
charge at A were included then the electric field at A would be impossible 

to define because of the mathematical infinity that you get from the 
inverse square law (field ∝  r-2)  when r → 0!) 

 
In the case of the parallel-plate capacitor,  

 
 

 

 
 

 
 

This is emphasised because it is often a source of confusion or puzzlement 
among students. 

  

If a system consists of a number of electric charges at 
points A, B, C, D, E, F, G, H etc., then the electrostatic 

force felt by one of them (say, the one at A)  is given by 
the formula  QAEA  where  QA  is the charge at A and  EA  is 

the electric field which would be produced at point A by the 
charges at B, C, D etc. if the charge at A were not present. 

the force on one plate is the charge which it carries 
multiplied by the electric field which would be there if 

only the other plate existed. 
 
 
 
 



 

 

So, what would be the electric field if there were only a single plate?  The 

electric field from a single positively charged plate would like this: 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

and the magnitude of the field (close to the plate and not near the edges) 
will be  σ/2ε  (not σ/ε, because the field goes out on both sides of the 

plate).  So, if a second plate (carrying charge -Q) is put beside that, the 

force on the second plate should be given by 
 

force    =    field x charge   =    σ/2ε   x  (-Q) 
 

but if the area of each plate is A, the areal charge density is  σ = Q/A , so 
we arrive at  

 

force    =    - ½ . Q2/Aε 
 



 

 

the negative sign indicating repulsion.  This answers the question as 

posed; but to go a little further let's redraw the figure above with the 
positively-charged plate on the left: 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

the reason being that we are going to draw in the second plate on the 
right.  The second plate is negatively charged, and the field due to it is 

illustrated in the next diagram: 
  



 

 

 
 
 
 
 
 
 
 
 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

Now, imagine the two diagrams above being superimposed on one 
another.   

 
 

 
 

 
 

 
 

 
The superposition of the two diagrams above just looks like the next 

diagram: 
 
 
 
 
 

Whenever two charged objects, or sets of objects, are 

brought together, the resultant electric field is simply 
the vector sum of the electric fields that the objects 

produced separately. 
 
 



 

 

 
 
 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 
 
 
Why does it look like this?  The reason is that the outside the capacitor, 

the fields due to the two plates (the red and blue fields) cancel each other 
out, because the arrows there are going in opposite directions.  But inside 

the capacitor, between the plates, the arrows are going in the same 
direction and the fields therefore reinforce one another.  So, although the 

field due to one plate is equal in magnitude to  σ/2ε, the field between 
two plates is twice this, i.e.  σ/ε.     

 
It was mentioned above that the force on each plate is given by the 

formula  ½ . Q2/Aε.  Now, suppose we are talking about a capacitor which 

is not connected to any external electrical circuit.  That being the case, 
the charge Q is fixed and therefore the force between the plates is fixed, 

even if the distance between the plates is increased or decreased. 
 

Now, imagine starting from a situation where the plates are practically 
touching one another.  There would then be no electrostatic field energy 

in the capacitor.  Now imagine that we gradually increase the separation, 
doing work against the constant force  ½ . Q2/Aε  until there is a distance  

d  between the plates.  The mechanical work done must be equal to the 
force multiplied by the distance  d.   This is equal to 

 
½ . (Q2/Aε) . d    =    ½ . Q2/C   

 
where we have used the fact that the capacitance (when the separation 

has reached d) is given by  C = Aε/d.  This can also be expressed in 

terms of the final voltage  V  between the plates, using  C = Q/V,  to give 
the energy in the capacitor as  ½CV2.  This is the same as the formula 

that was obtained earlier by a different line of argument. 



 

 

8.3 Magnetic fields 

 
At the simplest level, for systems in which there is no movement of any 

kind, it is possible to understand magnetism in much the same way as 
electricity.  "Electrostatics" is the science of the electric forces among 

stationary electric charges.  Similarly, "magnetostatics" is the science of 
stationary magnetic fields.  The difference between them is that electric 

charges actually exist, whereas magnetic "charges" do not.  Magnetic 

fields are produced by magnets, but a magnet always seems to contain 
not one but two magnetic "charges" which are called "poles".  The phrase 

"seems to" is crucial, because magnetic poles are, basically, illusions.  
Nevertheless, the concept of magnetic poles allows us to describe the 

behaviour of magnets and to calculate magnetic forces. 
 

For historical reasons, magnetic poles are usually described as being 
"north" or "south" instead of positive or negative.  A magnet, in its 

simplest form, consists of a bar made from a suitable magnetic material, 
and it will seem that a north pole is located near one end of the bar and a 

south pole near the other.  The poles having equal and opposite 
strengths, the bar as a whole will have no net magnetic "charge".  There 

are various magnetic materials from which such a magnet can be made: 
iron, nickel, cobalt and a number of other metals are suitable.  Such 

materials are called "ferromagnetic" if, like iron, they can be magnetised 

so as to produce powerful permanent magnets.  The phrase "permanent 
magnet" is used because, once the bar has been magnetised, it can retain 

its magnetisation more or less indefinitely: by contrast, an 
"electromagnet" is a different kind of magnet which is sustained by the 

flow of an electric current and will cease to be a magnet as soon as the 
current is switched off.  Exactly how a magnetic field can be sustained by 

an electric current will be considered at a later stage. 
 

Historically, our understanding of magnetism developed in the context of 
the discovery that the Earth itself is a giant magnet.  Crudely speaking, 

the Earth behaves as if it has a magnetic pole beneath the geographical 
North Pole and an opposite magnetic pole beneath the South Pole.  

Actually, if the geographical North and South poles are taken to be the 
points on the surface through which the Earth's axis of rotation passes, 

then the  Earth's magnetic poles are not precisely beneath the 

geographical poles but are beneath points on the surface which are some 
hundreds of miles away.  Moreover, the magnetic poles appear to be a 

long way beneath the surface, near the boundary between the Earth's 
core and its mantle. 

 
Opposite magnetic poles (i.e. a north pole and a south pole) are attracted 

to one another, while similar poles (i.e. two north poles, or two south 
poles) repel one another.  By analogy with electric field lines, magnetic 

field lines can be imagined to flow from north poles to south poles.  At 



 

 

any point where there is a magnetic field, its strength can be defined as 

the force which would be felt by a small imaginary north pole of unit 
strength located at that spot.  Since there is no such thing as an isolated 

north pole, what we use to detect a magnetic field is a "compass", i.e. a 
tiny bar magnet which has both a north and a south pole.  In a magnetic 

field, a compass will not feel any net force (because the force on its north 
pole will be cancelled out by the force in the opposite direction on its 

south pole) but in general it will feel a torque as the magnetic forces try 
to align the compass with the direction of the magnetic field.  A magnet, 

such as a compass needle, is sometimes called a "dipole".  Although a 
single magnetic pole - a north pole, for example - cannot exist in nature, 

a dipole can.  In fact, atoms and molecules often act as magnetic dipoles.  
It is because of their atomic and molecular structure that ferromagnetic 

substances can be formed into powerful permanent magnets. 
 

Quantitatively, magnetostatic forces follow the same rules as the forces of 

electrostatics and of gravitation.  The magnitude of the force between two 
poles is inversely proportional to the square of their distance apart.   

 
A single magnetic pole would produce a magnetic field at every point in 

its vicinity, the direction of the field being along the line between the pole 
and the point and its magnitude being inversely proportional to the 

square of the distance from the pole to the point.  The magnetic field due 
to a set of poles is found just by adding, as vectors, the magnetic field 

that would be produced by all the poles individually. 
 

The magnetic field lines (curves, actually) produced by a bar magnet are 
rather like this: 
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Question 8l: the magnetic field due to two bar magnets 
 
The diagram below illustrates a pair of identical bar magnets which have 
been placed on a tabletop.  They are pointing at right angles to one 

another.  What is the direction of the magnetic field at the point indicated 
by the asterisk? 

 
It can be assumed that the distances between the poles of each magnet, 

and the distance between the south pole of the left-hand magnet and the 
north pole of the right-hand magnet, and the distances of the asterisk 

from the poles nearest to it, are all equal. 

 
 
Question 8m: the force between parallel magnets 
 

We have a pair of identical bar magnets which can be imagined to have 
poles near to their ends.  They are placed on a table parallel to one 

another and side by side.  Show that the force between them would be 
approximately proportional to the inverse square of their distance apart if 

that distance were much less than the length of the magnets.  If their 
distance apart were much greater than the length of the magnets, show 

that the force between them would be approximately proportional to the 
inverse fourth power of their distance apart. 

 
This question is fairly difficult and you should not worry if you cannot 

solve it independently. 

  

* S 

N N S 



 

 

8.4 Magnetic fields due to moving charges 
 
In the previous section, we pretended that magnetic field are produced by 
magnetic poles in much the same way that electric field are produced by 

electric charges and gravitational fields are produced by masses. 
 

In fact, the situation is that 
 

 
 

 
 

Any kind of magnetic dipole is, in reality, a system within which there are 
moving electric charges producing what looks like the magnetic field due 

to a pair of magnetic poles.  The Earth itself contains circulating electric 

currents responsible for the Earth's magnetic field.  An atom may form a 
magnetic dipole if it contains electrons rotating around the central 

nucleus. 
 

An electric current is a simple system of moving electric charges.  
Imagine a steady current passing through a long straight wire.  The 

current can be regarded as a stream of moving electric charge.  In this 
situation, it is found that a magnetic field is produced which winds around 

the wire, with the magnetic field lines consisting of a series of concentric 
circles spreading outwards from the wire. The direction of the magnetic 

field will depend upon the direction of current flow.  The situation is 
illustrated here: 

 

I

 
 

Magnetic field around a straight current-carrying conductor 
 
 

Electric charges produce electric fields. 
Moving electric charges produce magnetic fields as well. 



 

 

Maxwell’s corkscrew rule 

 
The direction of the magnetic field around a straight current-carrying 

conductor can be found using the corkscrew rule. Imagine a corkscrew 
being driven in the same direction as the current in the conductor. The 

direction of the magnetic field is the same as the direction of rotation of 
the corkscrew.   The direction of current flow can be denoted by a dot, 

representing the point of the corkscrew when it is flowing towards the 
observer, and by a cross, representing the handle of the corkscrew when 

the current is flowing away from the observer. This is shown below.  
 

 
 

Current flowing away from   Current flowing towards 

 observer     observer 
 
 

 

Magnetic field of a coil 
 

A important example of the magnetic field produced by a current is the 
case of a coil (sometimes called a solenoid) in which the wire is wound 

helically to form a hollow cylinder.  The diagram shows a coil sliced by a 
plane through its axis.  The diagram shows just 8 turns of wire, but a real 

coil might have hundreds of turns.   
 
 
 
 
 
 
 
 
 
 

Magnetic field around a current-carrying coil 
 

When a current passes through the wire, and therefore goes around and 

around the coil, an intense magnetic field can be produced running 
through the centre of the coil as shown.  Seen from outside it, the coil will 

have the same sort of magnetic field as a strong bar magnet with north 
and south poles near the letters N and S in the diagram. 
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The Biot-Savart law  
 

Exactly what is the magnetic field produced by a moving electric charge 
or current?  This question is answered quantitatively by the "Biot-Savart" 

Law.  Suppose that a small charge Q is moving with a velocity v.  What 
magnetic field does it produce at another point P, if the displacement of P 

from the moving charge is r? 
 
 
 

 

 

 

 

 

 

 

 

 

 

In the above figure, the blue plane is chosen so that it contains both the 
vector v (the velocity of the moving charge) and also the vector r (the 

separation from the charge Q to the arbitrary point P).   

Then, the direction of the magnetic field at P is perpendicular to the blue 

plane, as illustrated by the vertical arrow in the diagram. 

The magnitude of the magnetic field at P is given by 
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This equation requires some explanation.  First of all, notice that we use 
the letter B to represent the magnitude of a magnetic field.  This is the 

conventional letter to use for this purpose. 
 

r 

The direction of the magnetic field at the point P 
is perpendicular to the plane containing r and v. 
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+ ve charge Q 

 
Charge moving 
with  velocity v  

point    
  P 

Magnetic field created by a moving charge Q 



 

 

What are the units of this equation?  Magnetic field strength, unlike 

electric field strength, has its own named unit in the SI system.  It is the 
tesla (T).   

 
As one would expect, the magnetic field strength is in proportion to the 

magnitude Q of the moving charge.  It is also in proportion to the speed 
v.  It is also inversely proportional to the square of the distance r, in 

accord with Coulomb's Law for electric forces and Newton's Law of 
Gravitation for masses. 

 
The factor sin(θ) means that the electric field would be zero of the 

velocity v were directly towards, or directly away from, the point P.  To 
put it another way: the magnetic field's magnitude is proportional to the 

component of v which is perpendicular to r. 
 

Finally, what about the factor μ0/4π?  This is a constant which sets the 

overall scale of magnetic forces, and it is analogous to the factor 1/4πε0 
occurring in the electrical force law.  The quantity μ0 is known as the 

"permeability" of free space.  It is defined so that it is exactly equal to 4π 
x 10-7, and its units are newtons per ampere per ampere (N A-2).   

 
The equation given above is true when the moving charge is in otherwise 

empty space, i.e. is in a vacuum.  When the surroundings are filled with 
any other material, the permeability of free space (μ0) must be replaced 

by a permeability μ specific to that material.   
 

There is a close analogy between permeability μ and permittivity ε.  The 
magnetic permeability of a material is actually a measure of the ease with 

which the material can be magnetized.  Most materials have permeability 
very close to that of the vacuum, μ0, but ferromagnetic materials have 

much higher permeabilities. 

 
Finally, notice that the Biot-Savart law can be written more neatly as a 

vector equation using the vector "cross" product notation: 
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The magnetic field produced by a current 

Since current flow is moving charge, the Biot-Savart law can easily be 

written in terms of a steady current I flowing in a small section of a 
conducting wire.  The length of the section of wire is written dL.  We treat 

dL as a vector because its direction, as well as its magnitude, is relevant. 

 

 

 

 

 

 

 

 

 

 

 

Then, IdL corresponds to Qv and we get 
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Question 8n 
 
Suppose a current of 1 ampere is flowing around a circular loop of wire 

which has a radius of 1 metre.  What is the magnitude of the magnetic 
field at the centre of the loop? 

 
Solution: Each part of the wire contributes to the magnetic field according 

to the formula above.  So, for the whole loop, 
 

𝐵 =   
𝜇0

4𝜋
 .
𝐼 .2𝜋𝑟

𝑟2
 

r 

Magnetic field perpendicular to  

the plane containing dL and r 
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Current 
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Magnetic field created by a current element IdL 



 

 

 

Now, μ0  =  4π x 10-7 in the appropriate units,  so μ0/4π  is just equal, 
numerically, to 10-7.  The current I is 1 ampere, the radius r is 1 metre, 

and so the value of B is 2π x 10-7 tesla, or 0.628 μT. 
 

    
 

8.5 Magnetic forces on moving charges and on 
 current-carrying conductors  
 
The Lorentz force equation 

 
At the start of the previous section it was pointed out that electric charges 

produce electric fields and that moving electric charges produce magnetic 
fields as well.   

 
Electric and magnetic fields bring about forces.  In fact 

 
 

 
 

 
 

 

So, while electric fields and forces are simply to do with the presence of 
electric charges, magnetic fields and forces are to do with the movement 

of electric charges.  If nothing ever moved, magnetism would not exist. 
 

In the previous section we discussed the magnetic field produced by a 
moving charge: it is given by the Biot-Savart Law.  But a moving charge 

will not only produce a magnetic field: it will also "feel" a magnetic field if 
one already exists.  In other words, a moving charge will experience a 

force due to any magnetic field through which it is moving.  When an 
electric charge q is stationary, we know that it will experience the force 

 

𝐹  =   𝑞𝐸 
 

where E is the prevailing electric field.  To take a magnetic field into 
account, this formula must be extended to  

 

𝐹  =   𝑞 . (𝐸 + 𝑣  × 𝐵) 
 
where v is the velocity of the charge q and B is the prevailing electric 

field.  This is known as the Lorentz force equation.  Here we have used 
vector (cross) product notation, and v x B is the vector perpendicular to 

Electric fields exert forces on electric charges.   
Magnetic fields exert extra forces on moving electric charges. 
 



 

 

both v and B and having magnitude vB.sin(θ), where θ is the angle 

between v and B. 
 

The force on a current-carrying wire in a magnetic field 
 

From the Lorentz force equation we can see that an electric charge q 
moving with velocity v in a magnetic field B, but without any electric field 

being involved, will experience a force qv x B. 
 

This means that a current-carrying wire must experience a force in a 
magnetic field.  The movement of a charge q at the velocity v is 

equivalent to a current I moving through a short section of wire with 
length and direction dL where IdL = qv, and the force on the section of 

wire would therefore be IdL x B.   
 

 

 
 

 
 

   
 

 
 

 
 

 
 

 
 

As an alternative way of looking at this phenomenon, consider a straight 

current carrying conductor placed at right angles to a uniform magnetic 
field as in the diagram below. 

 
The diagram shows two fields superimposed: the uniform magnetic field 

lines (left to right) and the magnetic field lines due to the current through 
the wire (the concentric circles).  
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Magnetic field due to 
permanent magnet 

The force F (newtons) on a straight section 

of wire of length L (metres), perpendicular 
to a magnetic field of magnitude B (teslas),  

carrying a current I (amperes) is given by 

 

F  =  BIL 
 
but if the wire is not perpendicular but is at 

an angle θ to the magnetic field, then 
 

F  =  BIL sin(θ) 
 
 



 

 

                                                                         
 
    Field due to current carrying conductor  
    at right angles to the magnetic field 
 

The actual magnetic field at each point is the vector sum of those two 

fields.  Above the conductor the lines of magnetic flux are acting in the 
same direction, and therefore reinforce one another, whereas below the 

conductor the lines of the magnetic fields are acting in opposite directions 
and will to some extent cancel each other out.  The net magnetic field, 

therefore, will look something like this: 

 
 

 
 
 

We can imagine the magnetic field lines to be a bit like threads of elastic 

which "try" to spread out from one another.  So, in this example, the wire 
will be pushed downwards by the closely-bunched magnetic field lines 

above it.  Of course, this argument is not mathematically rigorous. To 
work the force out properly, we should just consider the magnetic field 

which exists without the current (the uniform horizontal field) and then 
work out IdL x B.  Since the wire and the field are perpendicular, this 

vector product gives a force which has the magnitude IB per unit length 
of wire, and is in a vertical direction.  To be able to say which way the 

force goes - up or down - it is convenient to use "Fleming's left-hand 

rule".  This is nicely illustrated in Wikipedia. 
 

To make all this a little clearer, consider the diagrams below, which show 
how the magnetic force on a wire varies in magnitude as a consequence 

of the direction of current flow i with respect to the direction of the 
magnetic field B. 
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Combined magnetic field 
Downward Force 

http://en.wikipedia.org/wiki/Fleming%27s_left_hand_rule_for_motors
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Figure (a):   PARALLEL 
When the direction of charge 
movement and B are parallel, 
the angle between i  and B is 
00. Since sin(0) = 0, then 
from equation (1), the 
magnetic force F = 0 N.      

Figure (b): 
For angles between 00 and 
900, 0 < sin θ <1, therefore 
from equation (1), the 
magnetic force F = 
BiLsin θ .      

Figure (c):   PERPENDICULAR 
When the direction of charge 
movement and B are 
perpendicular, the angle 
between  i  and B is 900. Since 
sin(90°) = 1, then from equation 
(1), the magnetic force is at a 
maximum i.e. F = BiL.      



 

 

Two parallel current-carrying conductors 
 
An interesting system is a parallel pair of long straight current-carrying 
wires.  If two parallel conductors are carrying a current, each will 

contribute to the overall magnetic field in the neighbourhood of the wires.  
The contribution from a single wire will be of the kind considered earlier – 

a magnetic field with lines in concentric circles around the wire.  When 
there are two wires, the two contributions must be added together as 

vectors at every point.  When the wires are carrying currents in the same 

direction, the result will look like this: 
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Currents in the same direction 
 

 
On the other hand, when the currents are in the opposite directions, the 

total magnetic field must look like this: 
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Currents in opposite directions 
 

 



 

 

 

 
However, there will also be forces between the wires.  Just by looking at 

the diagrams, and thinking of the magnetic field lines as being like elastic, 
you might imagine that the wires will be attracted to one another when 

the currents are in the same direction (parallel) but repelled from one 
another when the currents are in opposite directions (“antiparallel”).  You 

would be right.   
 

To work out more carefully what is happening, it is necessary to consider 
the force that would be exerted on the right-hand wire as a result of the 

magnetic field due to the left-hand wire alone.  Then, consider the force 
that would be exerted n the left-hand wire as a result of the magnetic 

field due to the right-hand wire alone.  In other words, to work out the 
force on one current-carrying wire you have to consider the magnetic field 

due to the other wire(s) in the system but excluding the field due to the 

particular wire in question.  These considerations should convince you 
that, indeed, the wires attract one another when the currents are going in 

the same direction but repel one another when the currents are in 
opposite directions. 

 
 

 

8.6 Magnetic forces on current-carrying conductors: 
 two applications 
 

The Moving-coil loudspeaker 

 
The moving coil loudspeaker consists of a strong permanent magnet and 

pole pieces to produce a strong radial magnetic field in the air gap. This 
field is at right angles to a multi-turn coil of copper wire. This coil is able 

to move axially within the air gap and it is attached to a stiff paper cone 
or diaphragm. The function of the „spider‟ is to prevent the cone moving 

laterally and to return the coil to its initial position when the coil current is 

zero. 
 

When an alternating current is passed through the coil, the coil will move 
in synchronism with the current due to the magnetic force. The 

movement of the coil is transmitted to the diaphragm which creates the 
necessary changes in air pressure to produce the sound. 

 
A diagram of a typical moving coil loudspeaker is shown below.  

 
 

 
 

 



 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The DC motor 
 

The operation of the DC motor is more complex than that of the moving-
coil loudspeaker, since, to produce continuous rotation, the direction of 

force must be reversed in each of the rotating conductors after every 

180° of rotation. The operation of the DC motor can be considered by 
looking at the interaction between the magnetic field produced by the 

stationary field system and the rotating coil. 
 

The basic DC motor is based on a stationary magnetic field as shown 
below.  This magnetic field is normally provided by electromagnets.  Free 

to rotate within this magnetic field is the armature winding.  A single-turn 
coil is used to provide a simple armature winding. A DC supply is 

connected to the ends of this coil. The function of the armature is to have 
a torque developed on it, causing it to rotate. 

 
With the DC supply to the armature coil as shown, a two pole magnetic 

field will be produced whose axis will be vertical and having the direction 
shown (corkscrew rule). When placed between the field poles, the 

armature coil will rotate clockwise through 90° before the two magnetic 

fields align. 
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Continuous rotation can be achieved by reversing the direction of current 

flow in each armature conductor as it moves from under the influence of 
the stationary North pole to that of the South pole and vice versa, such 

that the directions of current shown in the armature above remains the 
same even though the armature is rotating.  The device that performs 

this switching operation is the commutator. The action of the commutator 

and its sequence of switching for a simple single turn armature coil are 
shown in the diagrams below.  Note: for convenience the brushes are 

shown on the inside of the commutator. 
 

In figure 1 the shaded commutator segment is connected to the positive 
brush and the unshaded commutator segment is connected to the 

negative of the DC supply. The axis of the armature magnetic field is at 
right angles to the stationary field, causing the armature to rotate in a 

clockwise direction. 
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In figure 2 the armature has turned through 90o. At this point the 

armature coil is short circuited and the current through the armature coil 

falls to zero, prior to its direction being reversed. The momentum of the 
armature carries it beyond this point. 
 

 
In figure 3 the unshaded commutator segment is now connected to the 
positive brush and the shaded commutator is connected to the negative of 

the DC supply. The axis of the armature is once more at right angles to 
the stationary magnetic field, causing the armature to continue to rotate 

in a clockwise direction. 

 
 
It can be seen that the commutator, in effect, changes the DC supply at 
the brushes into an AC current within the armature coil, allowing 

continuous rotation of the armature. 
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8.7 Just a little more about electromagnetism 
 
Electromagnetism is a subtle subject which most people find difficult. It 

calls for a good three-dimensional visual imagination, and a proper 
mathematical treatment requires vector calculus beyond the scope of this 

course – the treatment given here is just a simplified introduction.   
 

Electromagnetism involves some tricky concepts.  There are electric and 

magnetic vector fields, which can extend across otherwise empty space.  
There are the quantities of permittivity and permeability, which are 

properties of any particular material but are also possessed by a vacuum.  
By considering the case of a capacitor we have seen that an electric field 

has an energy density associated with it.  In fact, so does a magnetic 
field, and the energy density at any point in vacuo where there are both 

electric and magnetic fields, E and B, will be 
 

½𝜀0 . (𝐸2 + 𝑐2𝐵2) 
 

ioules per cubic metre.  Investigating this in more depth, including the 
reason why the velocity of light, c, crops up here, is a pleasure we must 

defer. 
 

It can be difficult to understand that a moving charge (or a current in a 
wire) not only creates a magnetic field, and therefore potentially exerts 

forces on other parts of the system; but it will also feel a force from any 
pre-existing magnetic field produced by some other part of the system.  

When thinking about this, it is as well to bear in mind Newton‟s Third Law 

of Motion – that, for every force, there is an equal and opposite force – 
because it is at the heart of how moving charges both create magnetic 

fields and feel them. 
 

In this section of the course we have introduced a number of new kinds of 
quantities.  Here is a list, including the SI unit names and base units:  

 
Current I   (ampere, A) [A] 

Charge Q   (coulomb, C) [s A] 
Electric field E  (no name)        [N C-1 or V m-1 or  kg m s−3 A−1] 

Voltage V   (volt, V)   [J C-1  or  kg m2 s−3 A−1] 
Capacitance C  (farad, F)   [C V-1  or  kg−1 m−2 s4 A2] 

Magnetic field B  (tesla, T)   [N m−1 A−1  or  kg s−2 A−1] 
Permittivity ε  (no name)  [C V-1 m-1  or  kg−1 m−3 s4 A2] 
Permeability μ  (no name)  [kg m s−2 A−2  or  T m A-1]    

 
You might think that this is rather daunting, but actually you have been 

let off lightly: there are many other quantities that we have not 
attempted to introduce, like resistance, electric displacement, inductance, 

magnetizing field, magnetic flux, magnetic pole strength,.... 



 

 

 

We use the term "electromagnetism" because electricity and magnetism 
are so closely bound up with one another that they should be regarded as 

aspects of a single type of force.  To see this more clearly, imagine a 
stationary pointlike charge Q.  We know that it will produce an electric 

field and that if it is stationary it will not produce any magnetic field.  Now 
imagine that you are observing the same charge Q but you are sitting in a 

moving car with velocity v.  From your point of view, the charge Q has a 
velocity -v.  But a charge moving with a velocity will produce a magnetic 

field as well as an electric field.  So, sitting in your car, you will see the 
moving charge Q apparently producing a magnetic field.   

 
Well, does the charge Q produce a magnetic field or doesn't it?  The 

answer must be that the charge Q produces an electromagnetic field 
which, in general, looks different to different observers.  And a field which 

seems purely electric to one observer may seem to have a magnetic 

component when it is looked at by another observer with a different 
velocity.   

 
So, when we say that a field is "electric" or "magnetic" we are making a 

statement which will only be true for particular observers.  In general, a 
field is "electromagnetic" and the extent to which it contains electric and 

magnetic components will depend on the velocity of the observer! 
 

 

Question 8o 
 

Near the surface of the Earth, in equatorial regions, the Earth's magnetic 
field has a strength of approximately 60 μT.  What is the energy density 

contained in this magnetic field?   
 

Solution: use the formula given above,  
 

½𝜀0 . (𝐸2 + 𝑐2𝐵2) 
 

with E = 0 and B = 60 x 10-6 T.  The value of ε0 is 8.854 x 10-12  F m-1, 
and the velocity of light c is 3 x 108 m s-1.  Putting in the numbers, the 

energy density comes out to be just over 1.4 mJ m-3 (millijoules per cubic 
metre).  

 
 

 

 
 

 
  



 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 
 

This is a section of Force, Motion 
and Energy.  It results from the 

work of several people over many 
years, with editing and additional 

writing by Martin Counihan. 
 

Second edition (March 2010).   
 

More information is given in the 
preface which forms the first file of 

this set. 
  

©2010 University of Southampton 
& Maine Learning Ltd. 

 

 
 

 
 


