
 

Section 5:  Work, Power and Energy 
 

 

5.1 Work and power 
 
If a constant force  F  acts on an object which moves a distance  s  in the 

direction of application of the force, the work done is the product of the 
force times the displacement: 

 

ntDisplacemeForceWork   

or 

FsW   

 

The unit of work must obviously be the newton-metres (N m) but this unit 
has its own special name, the joule (J).  Although the word “work” is 

often used in the context of movement through force, the more general 

term is “energy”.   
 

Note that it is the displacement in the direction of the force that comes 
into the definition of work.  In a more general case, we should treat the 

force as a vector quantity F and take the displacement as small distance 
dr , also a vector.  Then the element of work done can be written as a 

scalar product: 

𝑑𝑊  =    𝐹 ⋅ 𝑑𝑟 
 
This means that it is only the component of the force in the direction of 

the displacement that does work.  For example, consider the two cases 

shown below: 
 

 
 

 
 

 
 

 
In (a), on the left, a crate of mass  M  is pulled across a smooth floor by a 

force of  100 N  for a distance of, say,  20 m.  The work done is W = Fs = 
100  20 = 2000 J.  For the situation in (b), on the right, the work done is 

W = (F  cos())  s = 100 cos(30º)  20 = 1732.1 J. 

 

If the force changes with distance we have to add up all the elements of 

work done along the path on which the body moves.  We can write this as 
an integral: 

𝑊𝑖 →𝑓   =     𝐹
𝑟𝑓
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We can interpret the integral as the area under a graph of force against 
distance, as shown below: 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
A Force-distance graph for a variable force in one dimension. The element 

of work  dW  when the object moves a distance  dx  is the area under the 
graph (shaded) 

 
dxFdW   

 

The total work done in moving the body from position xi to position xf is 
the total area under the curve, given by the integral 

 

𝑊𝑖 →𝑓   =     𝐹
𝑥𝑓

𝑥𝑖

𝑑𝑥 

 
 

Work Done in Stretching or Compressing a Spring 
  

 
 

 
 

 
The force  required to stretch a 

spring is proportional to its 
extension (Hooke’s Law): in 

magnitude, 

 
  xkF   

 

where k is the spring constant.  The work done in stretching a spring by a 
distance L is therefore the area under the graph of  F  against  x, the 
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diagonal straight line in the diagram.  This is just the area of a triangle of 

base  L  and height  F=kL.  This is just 
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We would get the same answer by using an integral: 

 

𝑊  =     𝐹 𝑥 

𝐿

0

𝑑𝑥  =     𝑘𝑥𝑑𝑥

𝐿

0

  =     ½ 𝑘𝑥2 0
𝐿   =    ½ 𝑘𝐿2 

 
For a spring obeying Hooke’s Law, the work done in compressing the 

spring by a distance  L  is the same as the work done in stretching it by 

the same amount.  Although in compression the sign of the force is 
negative (since  x, the extension, is negative), as we compress it the 

increment  dx  is also negative, so the work is still positive: 
 

𝑊  =     𝐹 𝑥 𝑑𝑥
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Power 

 
Power is the rate at which work is done: 

 

td

dW

Time

Work
P   

 

The units of power are joules per second (J s-1) or watts. 

 
Using the expression for the element of work 

 

𝑑𝑊  =    𝐹 · 𝑑𝑟 
 
The power can be written: 

 

𝑃  =    
𝑑𝑊

𝑑𝑡
  =    𝐹 ·

𝑑𝑟

𝑑𝑡
  =    𝐹 · 𝑣 

 

 
So the power is the product of the force and the velocity: 

 
 

VelocityForcePower   



 

Question 5a 
 
A winch raises a load of  0.2  tonnes through a height of  5 m  in 10 

seconds at a constant rate.  Calculate the power of the winch motor.   
 

Solution:  the tension  T   in the winch cable exactly balances the weight  
Mg  of the load, since the load is not accelerating.  The power is therefore  

T  v = Mgv = 0.2  103  9.8  (5/10) = 980 watts. 

 

 

 

5.2 Work and kinetic energy 
 
Suppose a body of mass  m  is travelling initially at a velocity  u.  If a 

constant force  F  acts on the body over a distance  s, the body will 
accelerate at a rate  mFa /   to a final velocity  v, where  

 

asuv 222  . 

 
How does this relate to the work done?  The work done is:  

 

𝑊  =    𝐹𝑠  =    𝑚𝑎𝑠  =    ½ 𝑚 𝑣2 − 𝑣2  
 

The right hand side of this equation is just the change in the kinetic 

energy of the body. 
2

2
1 mvEnergyKinetic   

 

If all the work done on a body goes into accelerating it, we have: 
 

EnergyKineticinChangedoneWork   

 

 
 

5.3 Work and potential energy 
 
We have seen that we have to do work in order to accelerate a body over 

a certain distance.  However, there are also situations where just 
changing the position of a body requires work, even though the body 

acquires no velocity.  For example if I lift a block of metal of mass  m  
from the floor in order to place it on a table at a height  h  above the 

floor, I have to do work against the force of gravity acting on the block.  
 

Another example would be the work done in moving a mass attached to a 

spring.  In this case we are doing work against the elastic forces resulting 
from the deformation of the material of the spring. 



 

 

Conservative forces 
 

Suppose we want to move a body 
from the point A (with position vector r i ) 

to the point B (position r f ) as  
illustrated.  The work done in such 

a process would be the sum of all 
the elements of work :  

 
 

 

𝑊𝑖 →𝑓   =     𝐹

𝑟𝑓

𝑟𝑖

· 𝑑𝑟 

 

The answer we get when we calculate this integral might depend on which 
path we choose to take: for example the work done along path (i) in the 

diagram might be different from the work done along path (ii).  There is, 
however, an important class of forces for which the work done is 

independent of the path taken.  Such forces are called conservative 
forces.   

 
For a conservative force we can define the potential energy at a point, U, 

such that the difference between the potential energies at two points is: 
 

𝑈 𝑟𝑓   −    𝑈 𝑟𝑖    =   −   𝐹 · 𝑑𝑟

𝑟𝑓

𝑟𝑖

 =   −   𝑊𝑖 →𝑗    

 
Note that only differences in potential energy are defined, so we are free 

to measure the potential energy starting from any convenient point.  
Suppose we increase the potential energy of a body by doing work 

against a force in making a displacement of the body.  Then when the 
body is released, the force is free to do work, for example by accelerating 

the body and increasing its kinetic energy.  The potential energy refers to 
the “potential” for doing work – hence the term 

 
 

Gravitational potential energy 
 

The force acting on a body of mass m due to the gravitational attraction 

of the Earth is   
 

𝐹   =    𝑚𝑔   =   −𝑚𝑔𝑧   

 

 B 

A 
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where  𝑧   is a unit vector, vertically upward.  Since the force acts 

vertically downwards, it costs no effort to move a body in the  x  or  y  

directions, so the potential energy does not depend on  x  or  y.  We now 
work out the difference in potential energy for a body of mass m when it 

is lifted a height h above the Earth’s surface: 
 

𝑈 𝑕 −   𝑈 0   =   − 𝐹𝑧𝑑𝑧

𝑕

0

  =   −  −𝑚𝑔 𝑑𝑧

𝑕

0

  =    𝑚𝑔𝑕 

 

We choose the zero of the potential energy to be when  z =0, so that 
0)0( U .  Then the gravitational potential energy is: 

 

mghhU )( . 

 
The gravitational force is clearly conservative, since the work done by 

gravity when a body moves along a path only depends on the change in 
height between the starting point and the end point of the path. 

 
When we lift a mass through a height h we have to apply a force, equal 

and opposite to the downward gravitational force.  The work done is 
therefore: 

)(
0

hUmghdzmgW
h

  , 

 
that is, the work done on the system is equal to the change in the 

potential energy of the system.   
 

 
Potential energy of a spring 

 

To stretch a spring we have to apply a 
force equal and opposite to the force 

exerted by the spring  Fspring=  kx. 

The potential energy of a spring stretched 

through distance  L  is therefore 
 

𝑈 𝐿  −  𝑈 0  =  − 𝐹𝑠𝑝𝑟𝑖𝑛𝑔  𝑥 𝑑𝑥

𝐿

0
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𝐿

0

  ½ 𝑘𝑥2 0
𝐿 =  ½ 𝑘𝐿2 
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Again we may take the potential energy to be zero when the spring is 

unstretched, so that  0)0( U .  The potential energy of a stretched (or 

compressed) spring is then 

 
2

2
1)( kLLU  . 

 

Note from what we showed earlier, that the work done on a spring by the 
applied force, in stretching the spring, is equal to the increase in the 

potential energy of the spring: 
 

𝑊 =    𝐹𝑎𝑝𝑝𝑙𝑖𝑒𝑑  𝑥 𝑑𝑥

𝐿
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𝐿
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5.4 Conservation of mechanical energy 
 
 

Suppose we have a body moving in 
one dimension, subject to only 

conservative forces.  A simple example 
would be a bead sliding on a wire, 

with no friction.  The wire is bent into 
the shape  h(x)  shown in the sketch, 

where h is the height above the floor.   
 

Then the potential energy of the bead 
is just proportional to the height: 

 

)()( xmghxU  . 

 
If the bead is held initially at point A, its kinetic energy (KE) is zero but its 

potential energy (PE) is high.  When released, the bead slides down the 
wire, losing PE, but gaining KE.  The bead continues to accelerate until 

point B, where it starts to gain PE again at the expense of KE.   After 
point C, it speeds up again as it starts to fall, reaching  its maximum 

speed at the lowest point D.  It then slows to a stop at point E, at the 
same height as point A, when all its KE is converted into PE again.  If 

allowed to continue, the bead would continue to oscillate backwards and 
forwards between points A and E.   

 
In this case the conservative force is gravity.  As gravity does work  W  on 

the bead, its KE increases: 
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)(KEW  , 

 
but the work done by gravity is just the decrease in the potential energy: 

 
)(PEUW  . 

It follows that  
)()( PEKE  , 

or equivalently 
0)()(  PEKE . 

 
We can define the mechanical energy E of a body as the sum of the 

kinetic energy and the potential energy of the body.  The above result 
may now be phrased as the principle of conservation of mechanical 

energy: 
 

0)()(  PEKEE  

 

changecannotenergymechanicaltotalthe

forcesveconservatitosubjectsystemaFor ,
. 

 
For motion in one dimension the mechanical energy may be written 

 

)(2

2
1 xUmvE  . 

 
 

Question 5b 
 

A mass m is lifted from the floor through a height h and then released.  
What is its velocity when it strikes the floor? 

 

Solution:  use the principle of the conservation of energy.  By lifting the 
mass through a height  h  its potential energy is increased by  mgh.  

When the mass is released, the potential energy is converted into kinetic 
energy, so that by the point at which the mass strikes the floor its kinetic 

energy is 

mghmv 2

2
1

. 

It follows that 

ghv 2 . 

 
This is just the same answer we would get by applying the equation for 

uniformly accelerated motion to this problem:  asuv 222  , with  u=0, 

s =  h  and  a =  g. 

 



 

Question 5c 
 
A block of mass  2 kg  is dropped from a height of  40 cm  onto a spring 

with stiffness  1960 N m-1.  What is the maximum compression of the 
spring, in bringing the mass to a halt? 

 
Solution:  the gravitational potential energy lost by the block is converted 

ultimately into the potential energy of the compressed spring.  So, 

 

𝑚𝑔𝑕  =    ½ 𝑘 𝐿2 
 

Putting in the numbers gives  L  =  89 mm. 

 
 

 
 

5.5 Work and energy in the presence of friction 
 

Consider the example in the sketch,  

where a heavy block of mass  M  is 
pulled across a rough floor by a 

force  F.  The frictional force is  f  and 
the coefficient of kinetic friction is  k.   

 
The net force acting on the block is  F  f   and this produces an 

acceleration  a: 
mafF   

 

The work done by the force  F  in dragging the block a distance  d  is  Fd.   
 

fdmadFdW   

Using  aduv 222  , then  )( 22

2
1 uvad  , we can rewrite the work done 

as: 

 

𝑊  =    𝐹𝑑  =    𝑚𝑎𝑑 +   𝑓𝑑  =   ½ 𝑚 𝑣2 − 𝑢2  +  𝑓𝑑  =   𝛥 𝐾𝐸  +  𝑤𝑓   
 
From this result we see that some of this work is expended in increasing 

the kinetic energy of the block, the rest is the work  wf   required to 
overcome the frictional force  f. 

 
The forces involved in friction are, of course, non-conservative since if we 

reverse the path we still have to expend energy to pull the block back 

again.  The work done against friction is dissipated in the form of heat 
and noise generated at the contact between the block and the floor.  

Clearly the mechanical energy is not conserved here.   
 

F 

f M 



 

However once we realise that heat is just another form of energy, we see 

that the work done on the system by an external force (F in this case) is 
equal to the change in the total energy of the system, when we include all 

forms of energy in our account.  For an isolated system this leads to a 
broader principle, the conservation of energy: 

 

changecannotsystemisolatedanofenergytotalThe . 

 
While this is one of the basic principles of physics, it is not particularly 

useful for solving problems in mechanics, unless the forces are 
conservative, when it reduces to the principle of conservation of 

mechanical energy. 
 

 

Question 5d 
 

A truck of weight  600 kN  is driven up a slope, inclined at  15  to the 

horizontal, at a constant speed of  2 m s-1.  There is a constant resistance 

to motion of  200kN.  Calculate (a) the magnitude of the traction force 
required and (b) the work done in driving a distance of  150 m  up the 

slope. 
 

Solution:  since the truck moves 
at a constant velocity, the truck is 

in equilibrium, i.e. there is no net 
force acting on it.  Resolving the 

forces parallel to the slope: 
 

sinWfF   

 

so that the traction force is 
  

 F  =  200 x 103  +  600 x sin(15°)  
 

=  355 kN 
The work done is then  

 

MJFdW 29.5315010355 3   

 

Note that the work done by the traction force is made up of   
 

(i) the work done against friction: 
 

MJfdw f 3015010200 3   

 

(ii) the work done in increasing the potential energy of the truck,  

N 

W 
Wsin 

Wcos 

 
 
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MJmgsmgh 29.232588.015010600sin 3    

 

giving a total of MJ29.53 .  There is no increase in the kinetic energy here 

since the truck travels at a constant speed. 
 

 

Question 5e 
 
A heavy crate of mass  200 kg  is to pulled across a rough floor using a 

constant force of  1200 newtons.  The coefficient of kinetic friction 

between the crate and the floor  k = 0.6.  Calculate the maximum 

possible acceleration of the crate and the time taken to drag the crate 

10m. 
 

Solution: the forces acting are shown in the diagram.  The friction force is 
f, and N is the normal reaction force.  Resolving the forces normal to the 

floor, we have: 
MgFN  sin  

(i) 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

The net horizontal force is  
fF cos  

 

which produces an acceleration  a. The equation of motion for the crate is 
therefore 

 
MafF cos  

     (ii) 

 
We can write the friction force in terms of the normal reaction force: 

 

M 
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N 
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)sin(  FMgNf kk   

   (iii) 

 
In (iii) we have substituted the value of N from (i).  Substituting for f in 

(ii) gives 

)sin(coscos  FMgFfFMa k   

 

This gives the acceleration as  
 

]sin)/([cos)/(  MFgMFa k   

 (iv) 
 

We now have to find the value of  that maximises the acceleration.  To 

do this we use a bit of calculus: the condition that a is a maximum is that  
 

0
d

da
 

We find: 
 

𝑑𝛼

𝑑𝜃
  =    

𝐹

𝑀
  − sin 𝜃  +  𝜇𝑘  cos 𝜃   =    0 

 

giving k tan .  So the optimal angle to apply the force to the crate is  

 

𝜃  =    tan−1 𝜇𝑘  
 
 

 
 

 
 

 
 

 

 
 

We see from the triangle that for this value of , 
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We can substitute these values into equation (iv): 
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Putting the numbers in we find: 
 

22
max 117.18.96.036.1
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1  msg

M

F
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Using 
2

2
1 atuts  , the time taken to drag the crate 10 m is 

 

sec23.4
117.1

1022
min 


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a

S
t  

 
Note that from (iv) if we had applied the force parallel to the floor, the 

acceleration would be about ten times smaller: for   = 0 

 

212.08.96.0
200

1200  smg
M

F
a k . 

 
In this case it would take  12.9  seconds to drag the crate  10 m. 

 
In the absence of friction the acceleration would be 
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5.6 Energy in simple harmonic motion 
 

Simple harmonic motion (SHM) often occurs in mechanical systems when 
they are displaced from equilibrium.  For example consider a mass 

hanging on an elastic string.  Its weight has stretched the spring until the 
mass is in equilibrium between the weight mg acting downwards and 

tension T in the string acting upwards.  Suppose we now pull the mass 
down a small distance and release it.  The extra tension in the string will 

accelerate the mass upwards, then it will oscillate up and down at an 
angular frequency  , executing SHM.  Other examples include the motion 

of a simple pendulum, the vibrations of a mass on the end of a cantilever, 
etc. All of these systems are governed by a restoring force that is 

proportional to the displacement of the system: 
 

xkF   



 

 

Correspondingly the potential energy of the system is quadratic in the 
displacement, as for the elastic spring discussed in the previous section: 
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2
1)( xkxU  . 

 

The form of  U(x)  is shown here:  
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

The mechanical energy is the sum of the kinetic energy and the potential 
energy: 

2

2
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1 xkmvE   

 

Since the system is isolated, the total energy is constant.  This means 
that if the potential energy increases, the kinetic energy must decrease, 

and vice versa.  To study the time dependence of the problem, suppose 
that the displacement changes with time like a cosine: 

 

)cos( tAx   

 

where A is the amplitude and  is the angular frequency of the oscillation.  

It follows that the velocity is:  

 

)sin( tA
td

xd
v   

 

The total mechanical energy is then 
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𝐸  =    ½ 𝑚  −𝐴𝜔 sin 𝜔𝑡  2  +   ½ 𝑘 𝐴 cos 𝜔𝑡  2 
 

The only way the total energy can be made a constant (i.e. independent 
of time t) is for the coefficients of  𝑠𝑖𝑛2 𝜔𝑡   and of  𝑐𝑜𝑠2 𝜔𝑡   to be 

identical, since  

𝑠𝑖𝑛2 𝜔𝑡  +   𝑐𝑜𝑠2 𝜔𝑡  =   1 
 

In this case we would have 
2

2
122

2
1 kAmA   

 

Hence the natural frequency of oscillation is: 
 

m

k
  

 

This is the standard result for SHM, and the total energy is:  
 

22
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2
1 AmkAE 

 
 

The illustration below shows the time dependence of kinetic energy and 
potential energy in SHM.  Note that the total energy KE+PE is constant. 
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