Section 7: Rotational Kinematics

7.1 Torque and Newton’s second law

There are two conditions for static equilibrium of a body, namely that (i)
the vector sum of all the external forces acting on the body must be zero,
and (ii) the sum of all the external torques acting on the body must be
zero. If the first of these conditions is not satisfied then, from Newton’s
second law, the body would experience a linear acceleration proportional
to the magnitude of the net force. Similarly if the second condition is not
satisfied we would expect the body to experience an angular acceleration
proportional to the net torque.

Consider a mass m attached

to a light rod, pivoted at the point P. D

If a force F is applied to the mass at \ R F
right angles to rod, there will be o ] .
an instantaneous linear acceleration g,

where P l/ m

F =ma

Since the mass is pivoted at P, it is constrained to move in an arc of
radius R, so the linear acceleration a is converted into an angular
acceleration «, such that a =aR . The force equation therefore

becomes:
F=mR«

If we now multiply both sides by the radius R, the product FR on the left
hand side becomes the torque T:

I'=FR=mR?’a =la

This is Newton’s second law applied to rotational motion. I'=Ila has
exactly the same form as F =ma, with the torque T replacing the force
F, the angular acceleration o replacing the linear acceleration a and the
role of the mass m being taken by I, the moment of inertia.

For a point mass rotating about a pivot at a radius R, the moment of
inertia is defined as I = mR?. We will see how to calculate the moment
of inertia for extended objects below.



7.2 Moments of inertia

In the context of rotational motion, the moment of inertia plays a role
equivalent to mass in linear kinematics. As we have seen above, the
moment of inertia for a point mass m rotating about an axis at a radius R
has the value I = mR?. Suppose we have a composite system made up
of several masses mj, at various distances R; from a common axis about
which the system rotates at a common angular velocity. The total
moment of inertia of the system is then the sum of the individual
moments of inertia:

1=> mR?’
[

The moment of inertia of a rigid body

Suppose that a rigid body is rotating about
the z axis and that the body has a uniform
density p. We can divide the body up into
a set of discrete volumes dV;, so that the
total mass m is given by

A
m=dei :Z,odvi

We can now calculate the moment of inertia of the body by summing over
all the mass elements p dVi, weighted by the square of the distance of
each element from the rotation axis:

| => R?dm; =) R’pdV,

When the volume elements dV, are infinitesimal this can be written as an
integral:

|=jR2dm=jR2pdv

where the integral is taken over the volume of the body.



A uniform circular disc

The moment of inertia of a uniform disc, rotating around an axis passing
through its centre and perpendicular to it, can be easily by integration,
but an alternative method of calculation is given here which avoids
calculus. Firstly, notice that the moment of inertia I must be
proportional to the disc’'s mass M (if its radius is fixed) and to the square
of its radius R (if its mass is fixed). That is to say,

I = cMR?
(1)
where c is a numerical constant. This is obvious on dimensional
grounds. Our task is to calculate the value of the constant c.

Egn. (1) can be rewritten in terms of the areal density of the disc, p,
measured in kilograms per square metre. The mass M is equal to nR?p,
SO
I = cnpR*
(2)

Now consider two discs, equal in density, one of radius R and another
whose radius is greater by a small increment AR. The two discs are
illustrated concentrically below:

IAR

The moment of inertia of the inner disc, I(R), is just cnpR®, that being
equation (2) above. For the moment of inertia of the outer disc, R must
be replaced by R + AR, and it may be written

I(R+ AR) = cmp(R+ AR)*
(3)



It is tedious but straightforward to multiply out (R + AR)?, and the result
is

I(R+ AR) = cmp.(R*+ 4R3AR + 6R?*(4R)?> + 4R(AR)? + (4AR)*)

(4)

If AR is very small compared with R, then each of the terms in the
brackets on the right-hand side, following R*, will be much smaller than
the term preceding it. So, to a good approximation (to “first order” in
AR, as we say), the later terms can be neglected and we can just write

I(R+ AR) = cmp.(R*+ 4R34R)
(5)

However, there is another way of obtaining the moment of the outer disc.
We can simply take the moment of inertia of the inner disc, as in equation
(2), and add on the moment of inertia of the ring (or "annulus”) between
the two discs. Since AR is small, the circumference of the ring is 2nR.
Multiplying the circumference by the thickness of the ring, AR, we obtain
the ring’s area 2nR.AR, and multiplying this by the density p gives the
mass of the ring, 2npR.AR. Since the ring is all at practically the same
distance R from the centre (AR being very small) the ring’s moment of
inertia is obtained simply by multiplying its mass by the square of the
distance R, giving 2npR>.AR.

So, we must have
I(R+ AR) = cmpR* + 2mpR3.AR
(6)

but for equations (5) and (6) both to be true, it must obviously be that

cmp.4R3AR = 2mpR3AR)

(7)
giving
c = 1
(8)
which means, from equation (1), that
I = V2MR?
(9)

and this is the desired formula for the moment of inertia of a disc rotating
around the axis through its centre and perpendicular to it.



A uniform circular disc: the method of integration

The previous result can be obtained straightforwardly using calculus,
integrating over the volume of the disc.

We can take the element of A
volume to be a circular ring of radius
r and width dr. Then

dV =2xzrtdr N /

where t is the thickness of the disk.
The mass element is then

v

dm= pdV =27 rtdr

The moment of inertia is then
| =[r’dm=[r’pdv =I0Rr227zprtdr
so that
4 R
r
I = 2npt fr3 dr = 2mpt lzl = Y mpR*t
O 0

But the total mass of the disk is M =aR*t p. It follows, therefore, that the
moment of inertia of the disk is

| =1 MR?

which is, of course, the same result as has already been found by a
different method.

A thin spherical shell

What is the moment of inertia of a thin spherical shell rotating around an
axis which passes through its centre?

Consider the shell as a collection of very small parts (labelled by 1, 2, 3,
v, I, i1+1, i+2, ....) with masses m; and positions ri. In terms of
orthogonal Cartesian coordinates x, y and z, the positions r may be
represented by
o= (X%Y5%)
(1)

and the moment of inertia for rotation around the z-axis is



I, = Zmi- (x* + yi%)
i
(2)
because, by Pythagoras’ Theorem, (xi? + y?) is equal to the square of
the distance of the piece i from the z-axis. In fact, this equation is true

for an object of any shape at all, not just a spherical shell. Similarly, the
moments of inertia for rotation around the x-axis and the y-axis are

L, = Zmi-(yiz + z%)
i

(3)
and
Iy = Zmi.(xiz + Ziz)
i
(4)
Adding all these together, we get
I, + I, + I, = Zmi. (2x* + 2y° + 2z?)
i
(5)
Because of the symmetry of a spherical shell, the moments of inertia
around the x, y and z axes must be equal. The shell looks the same
from all directions. So,
I, =L =1
(6)

Also, in the particular case of a spherical shell, every part of the object is
exactly the same distance (R, say) from the origin, so

RZ = xl-z + in + Zl-2
(7)

independently of i. This is the Theorem of Pythagoras in 3 dimensions.
Putting equations (6) and (7) into (5), and using

Zmi = M
i

for the total mass of the shell, we get

(8)



3.1, = 2MR?
(9)
so that
I, = % MR?
(10)

as our final result for the moment of inertia of a thin spherical shell of
mass M and radius R.

Question 7a

What is the moment of inertia of a uniform solid sphere rotating around
an axis which passes through its centre?

Solution: use basically the same technique that was used earlier to
calculate the moment of inertia of a disc. If the sphere has a mass M
and a radius R, then the moment of inertia must be proportional to MR?.
Express that fact in terms of the density of the sphere instead of its mass.
Then, consider the moment of inertia of a sphere whose radius is greater
than R by a small amount AR. The difference between the two must be
the moment of inertia of a spherical shell of thickness A, which is given
by the formula derived in the previous section. Deduce that the formula
for the moment of inertia of a solid sphere is given by

I = %MR?

Some terminology: radius of gyration

The radius of gyration, k, is defined so that the moment of inertia of a
body of mass M, rotating about its centre of mass is

| = Mk?
This means that the radius of gyration may be calculated via

k? :ﬁjrzdm

Using results derived above and later below we find that the radii of
gyration for some common shapes are:



1 2 1
kdisc = ﬁa ' ksphere = \/ga ; krool = E L

The Parallel Axes Theorem

The "parallel axes" theorem is a very useful relationship between an
object's the moments of inertia for rotation around two different axes,
one of which passes through the object's centre of mass. The proof of the
theorem is as follows:

A large irregularly-shaped object is illustrated above.

The origin of coordinates is the point O. Coordinate axes (x and y) are
illustrated, but we shall not actually need to use them in the calculation
below.

The origin O is chosen to be at the object's centre of mass.

We are going to calculate the moment of inertia for the rotation of the
object around an axis which is perpendicular to the illustration and which
passes through the point labelled A. The position vector of A (in other
words, its displacement from the origin O) is a.

The object is imagined to be broken up into a very large number of very
small parts labelled Ry, Rz, R3, R4, Rs, and so on. In general, any of
these parts is labelled as R;, where the index /i may take on any of the



values 1, 2, 3, 4, 5, and so on. The position vector of R; is denoted as
ri. Let the mass of the part Rj be m;.

It is important to understand that, because O is the centre of mass of all
the parts R; which make up this object, we have

Emiﬁ = 0
i

This is so because, in any coordinate system, the centre of
mass of a set of masses m; at positions r; is given by

= maf ) m
i i

1
tm = Yy Zmiﬁ
l
where the total mass of the object is represented by M, so

that
M = Zmi
i

(1)

or

(2)

(3)

However, because the origin O has been chosen to coincide
with the centre of mass, the position vector rcw of the
centre of mass is zero. In other words, the centre of mass is
at zero distance from the origin. Because rcm = O,
equation (1) above leads to

zmift = 0
i

(4)

To calculate the moment of inertia of the object when it is rotating around
an axis through A, the mass m; of each part R; must be multiplied by
the square of its distance from that axis, i.e. the distance (in the plane of
the diagram) from A to R;. The displacement vector from A to R; is



got by just subtracting their position vectors, a and r, and so the
square of the distance is

n - qf

The moment of inertia around A is therefore

or

I, = Zmi(riz - 2r,-a + a?)

I, = Zmiriz - Zmi.Zg-g + Zmiaz
' :

and using equation (3) from the box above, this gives

or

I, = Zmiriz — M.rpy-a + Ma?
i

and because of equation (4) the middle term on the right hand side is
zero, leaving

I, = Iy + Ma?

This is the "parallel axes theorem". It means that, if we know the
moment of inertia for the rotation of an object of mass M around an axis
which passes through its centre of mass, then we can easily calculate its
moment of inertia for rotation around any other parallel axis: we just add
on Ma?, where a is the distance between the two axes.

A uniform straight rod

Although the moment of inertia of a thin uniform rod, rotating around an
axis perpendicular to it, can be calculated easily by integration, another
method of calculation is given here using the Parallel Axes Theorem.
Suppose that I(M, L) is the moment of inertia of a uniform rod of mass
M and length L rotating around an axis which is perpendicular to the rod
and passes through one of its endpoints.

The moment of inertia I(M, L) must be proportional to M and to the
square of L. That is to say,



I = cMIL?
(1)

where c¢ is a numerical constant. This is obvious on dimensional
grounds. What is the value of c¢?

The rod is illustrated below. It is understood that the length L is much
greater than the thickness of the rod. For rotation around an axis passing
through A or B, then, the moment of inertia is given by equation (1).

A C B
- a
L

But what is the moment of inertia for rotation around an axis through the
point C at the centre of the rod? The point C is the rod’s centre of mass,
so let us designate that moment of inertia by Icy. Now, Icm can be
regarded as the sum of two parts: the moment of inertia of the right-hand
half of the rod (CB, rotating around C) and that of the left-hand half of
the rod (AC, also rotating around C). These are equal to one another,
and each is the moment of inertia of a rod of mass M/2 and length L/2.
So, adding the two halves together, we get

2

= @G B

Iy = VacMI?

2

(2)

whence

(3)

The trick is now to use the parallel axes theorem to obtain, from equation
(3), a formula for the moment of inertia of the whole rod around an axis
through one of its endpoints (A or B). The parallel axes theorem can be
written

IA = ICM + ]wa2

(4)
In this instance, Icm is given by equation (3) and the distance a
between the two axes is simply the distance between the points A (or B)
and C, that is to say L/2. Therefore,



2

L
I, = YcMI? + M(E)

(5)

or
I, = Va(c+1)ML?
(6)

But, if our theory is consistent, this has to be equal to the expression in
equation (1). Therefore,

cML?> = Y (c+ 1)MIL?

(7)
from which it follows that
c = %
(8)
so finally we arrive at
[ = Y ML?
(9)

as the formula for the moment of inertia of a thin uniform rod rotating
around an axis perpendicular to it and passing through one end.

Question 7b

What is the moment of inertia of a thin uniform rod, of length L, rotating
around its centre of mass?

Solution: the required moment of inertia is what was called Icy in the

section above. Its value is given by equation (3) above, with the value of
c being ¥ (eqgn. (8) above)/ So, for a rod rotating around its centre,

I = 1ML2
12

Question 7c

If you are familiar with integral calculus, verify the solution of question 7b
by integrating over the length of the rod.

Solution: let p be the mass per unit length of the rod. We take the mass
element to be that portion of the rod between x and x+dx, then

dm = pdx



The moment of inertia is then

L/2 L/2
1
I = fxzdx = fxzpdx = ’/3,0[953]L_/L2/2 = %plg- <—§)l = EpL2

-L/2 -L/2

The total mass is M = pL, so that | =L ML

The perpendicular axes theorem

The perpendicular axes theorem is A
a useful rule applicable to objects z
which are thin and flat. Such an

object is sometimes called a "lamina".

Consider a lamina rotating around

an axis which is perpendicular to itself.
We will use a coordinate system such
that the axis of rotation is the z axis
and the lamina is in the x-y plane

as shown in the diagram.

The fragment /i has a mass m; and coordinates x; and y;. (zi=0
because the lamina is a flat object in the x-y plane.)

The moment of inertia of the body is
I, = Zmi (2 + v
i

because (x> + yi?) is (by Pythagoras' Theorem) the square of the
distance of the fragment / from the axis of rotation, i.e. from the z axis.
But this can be split into two sums:

I, = Zmixiz + zmiyiz
i i



But the first sum is just the same as the moment of inertia for rotation
around the y axis, and the second sum is the moment of inertia for
rotation around the x axis. So, switching the order of the two sums, we
can write

and this is the perpendicular axes theorem.

Question 7d

A shop sign consists of a circular disc of mass m
and radius a hinged along a tangent as shown in
the sketch. Find a formula for the moment of Ye Olde
inertia of the sign when it rotates around the hinge. Tea

Shoppe

Solution: it was shown earlier that a disc rotating about an axis passing
through its centre, perpendicular to its plane, has a moment of inertia

which, in terms of m and a, is

| =1ma?

z

N[~

Using the perpendicular axes theorem we have

=1, +1,

and by symmetry

It follows that
1 11 _1
I,=1,=11,=1ma

Here I, and I, would be the moments of inertia for rotation around axes
which are in the plane of the disc and pass through its centre. To find the
moment of inertia for the disc rotating about the tangential axis
illustrated, which is offset from the disc's centre by a distance equal to
the radius a, it is necessary to use the parallel axes theorem:

lon = I, +mMa® =1ma® + ma® = Sma’



Moments of inertia for objects of various shapes

For a useful summary of the formulae for the moments of inertia of
objects of a humber of different shapes, see Wikipedia.

Question 7e

Two masses M; and M, are connected
by a light inextensible cord that passes
over a cylindrical pulley of mass m and
radius r. The cord has no tendency to
slip on the pulley, so tensions in the

two portions of the cord are different,

T1 and T», as show in the diagram. Find
the linear acceleration of the masses
once they are released.

T
Solution: firstly we write down the moment 1‘ -
of inertia of the pulley: M 1‘
1
| =1imr? M,

Now the torque on the pulley is
r=(T,— T)r

and «a, the angular acceleration of the pulley, is given by the rotation
counterpart of Newton’s second law:

I'=la
Substituting for the torque and the moment of inertia gives
r = (T,— T)r = la = Yamria
Now we can relate the angular acceleration « to the linear acceleration

a using a=ra. If weinsert a=alr into the torque equation and
divide both sides by the common factor of r, we find:

T,-T,=ima


http://en.wikipedia.org/wiki/List_of_moments_of_inertia

There are also the equations of motion ("F = ma") for the two masses:
M,g-T,=M,a (ii)
and
If we add equations (ii) and (iii) we get
M,g-M;g—(T, -T))=(M; + M,)a.
We now substitute for T, — T; from (i) and find:

Hence the acceleration of the masses is

(M, -My)g
M;+M,+m/2

7.3 Work and Power in Rotational Motion

In the sketch a block of mass m is being
raised at a constant rate by a cable that
winds around a rotating drum with radius R.
Since the block is not being accelerated, R
the tension in the cable F is equal to the

weight of the block mg. Suppose the block

is raised through a distance s. The work F
done by the force F is then just the force
times the displacement:

W =Fs
Now we can relate the distance s to the angular displacement 6 by
s=R6#
(see diagram following) and inserting this into the work equation gives

W=Fs=FRO=T16



A
RS
v

The work dome in rotational motion is the product of the torque and the
angular displacement.

Power is the rate at which work is done, and we have already
shown that

_dW_Fds_

P~ —F22=
dt dt

Fv

where v is the velocity with which the block is being raised. The
angular velocity o is related to the linear velocity v by v=Rw. It
follows therefore that for rotational motion

Pzdd—vlleV:FRa)zl“a)

Power exerted in rotational motion is the product of
the torque and the angular velocity.

7.4 Rotational kinetic energy

Suppose a body with moment of inertia I is rotating at an angular
velocity i, and is then acted on by a constant torque I'. In this case
the angular velocity should increase linearly with time, the angular
acceleration being given by I'=Ila. From the equations for rotational

motion we can work out the angular velocity following a certain angular
displacement 6:

0t =w! +2a6

It follows that the work done by the torque in acting over this
displacement is



W=T8=laf=11(0? —f)

We recognise that the work done has been stored as a form of kinetic
energy of the body. We deduce that

Rotational kinetic energy = %2 I w?

The definition of kinetic energy for a rotating body, ':2Iw?, has the same
form as for linear motion, Yamv 2, with the moment of inertia playing the
part of mass and the angular velocity « substituting for the linear
velocity v.

The kinetic energy of a rolling wheel

As a wheel rolls along a surface there are two components to the kinetic
energy, one due to the linear velocity of the centre of mass,

KEji, =3 mv’

and the other due to the rotational kinetic energy,
2
KE, o :% lo

The condition for rolling without slippage is that v=wr, so the total
kinetic energy is

I
KEror = Y%amv? + Y%lw? = % <m+r_2>v2

In the case of a solid disk, where | =%mr2,

KE o = 3mv?

while for a hoop-like wheel, where all the mass is on the rim, | =mr?and

KE,,, = mv?



Question 7f

Three objects: a solid sphere, a solid
cylinder and a hoop are rolled down an

incline. Each has the same mass M
and radius R and they all travel through /O
the same vertical distance h. What are
their linear velocities, and how do these
compare to the velocity of a cubic block
that slides down the same incline, without
friction?
Solution: we use the energy method here: the decrease in the PE of each
object is Mgh. This must equal the increase in the total KE
I
Y Mv? + %lw? = Y% (M+ ﬁ) v?

It follows that
I 2
1/2<M+—R2>v = Mgh

so that
V2 o 2Mgh

M +1/R?

For the sphere, | :%MRZ, SO Vgphere =+/10/7gh =1.195,/gh
For the cylinder | :%MRZ, SO Veylinder = 4/30h —1.155,/gh
For the hoop | =MR?, and so Vhoop = @

For the block that slides without friction: v? = 2gh, so

Volook = /200 =1.414,/gh

The block travels fastest, followed by the sphere!



Question 7g

A block of mass M is suspended from a cable which

wraps around a cylindrical drum of mass m and

radius R. The block falls from rest. What is the

velocity of the block after it has fallen, from rest,

through a height h? T

Solution: method 1

The equation for the linear acceleration of the mass M is

Mg-T =Ma
(i)
The equation for the angular acceleration of the drum is
I'=TR=la=imR’a
(i)

From (ii), since aa=alR, it follows that

T 1 1 mR2 a Im
R 2 R 2 a
We now substitute for T in eq.(i):

Mg — Zma=Ma

leading to
Mg=(M +Im)a

and so the linear acceleration is:

M

aAa=—
M +im

g

We now use the equation: v?> =u® +2as, withu = 0 and s = h:

v2 :2ah:L2gh
M+im



Dividing top and bottom by M and taking the square root gives:
N
1+m/2M

Solution: method 2

The second approach uses conservation of energy for the system: the
increase in the kinetic energy (linear + rotational) must be equal to the
decrease in the potential energy of the mass M when it falls through a
distance h. It follows then that:

2 2
$Mv® + 3 10° = Mgh.

Now we only need to substitute I = ¥amR? and use the relation w= v/R
and the same answer results! This is clearly a much neater route to the
solution.

7.5 Angular momentum and angular impulse
Consider a body with mass m attached to a 3
light rod, of length r, pivoted at point P. =
Suppose the body, initially at rest, experiences =

an impulse J, resulting from a force F applied i r
for a time 4t, so that J=FAt.

From Newton’s laws, the change in the momentum of the body is equal to
the impulse: A(mv)=1J.

However, since the mass is pivoted, it begins to rotate at an angular
velocity o given by v = wr. We can think of this rotational motion as
resulting from an angular impulse, which is the moment of the linear
impulse J:

Jr=(F xr)At=TAt.

An angular impulse is the product of a torque I
and the time At for which it acts.




The result of the angular impulse is to produce a rotation about the pivot:
Jr =TAt=A(mvr) =A(mar?)

This equation says that the effect of an angular impulse is to produce a
change in the quantity mvr = mwr?. This quantity is called the angular
momentum of the body.

The angular impulse is equal to the change in
the angular momentum of the system.

Angular momentum is the product of the ‘

momentum of a moving object and the r
perpendicular distance between the line of .
motion and the axis of rotation. l

The usual symbol for angular momentum is L and it is measured in units
of kgm?s? or Nms.

The angular momentum of a body of mass m rotating around an axis at a
distance r with angular velocity o is given by L=m® r?

This definition works for a point mass, but what happens for an extended
object? Suppose a body is subjected to a torque I for a time t. If the
body has an initial angular velocity ;, it will be subjected to an angular
acceleration «, so that after a time t its angular velocity will have
increased to or, where

From Newton’s 2™ law for rotational motion: I'=la, where I is the
moment of inertia of the body. It follows that

Pty @)

and so the angular impulse is



re = I(wp— w;) = AL

This gives another representation of the angular momentum:

Angular momentum is the product of the moment
of inertia and the angular velocity: L=Ilw

Clearly this is the rotational equivalent of linear momentum myv, since o
is the angular velocity and I plays a role in rotational motion equivalent
to mass in linear motion.

The rate of change of angular momentum

If we suppose that the torque is applied for a short time, At, it would
follow from above that At = AL, so in the limit of At - 0 we have that
the rate of change of the angular momentum is equal to the net applied
torque acting on the system:

r-dt
dt

The conservation of angular momentum

If the system is not subjected to external torques, then, from above, the
rate of change of the angular momentum must be zero. It follows that
the angular momentum is then a constant, independent of time. This is a
basic principle of physics, as fundamental as the conservation of linear
momentum:

If there are no external torques acting on the
system, then the angular momentum is conserved.

A particular example where conservation of angular momentum applies is
for a system acted on by central forces, for example, consider the planets
in orbit around the Sun. A planet is kept in its orbits by the gravitational
attraction between the Sun and the planet. This acts along the line
joining the two bodies, so there is no torque involved. The angular
momentum is therefore conserved.



Question 7h

A satellite is on a highly elliptical
orbit around the Earth, where
the distance of closest approach

(perigee) is 10000 km and the Ya
furthest distance (apogee) is
15000 km, both measured from

the centre of the Earth.
What is the ratio of the orbital
speeds at perigee and apogee?

Vp

Solution: since angular momentum is conserved,

L=mv,r, =mv,r,

where subscript p means perigee and subscript a means apogee. The
satellite will be travelling faster at perigee than at apogee:

Vv
Vo _fu 15000 _, ¢
v, r, 10000

a p
Question 7i

The Sun has a radius of 695000 km and a mass of 2x10%° kg. It rotates
on its axis once every 25 days. Suppose the Sun collapsed into a
neutron star with the same mass but a radius of only 10 km. How fast
would it rotate?

Solution: assuming the Sun to have a uniform density, we can take its
moment of inertia to be

| =2MR?
Its angular momentum is then
L=lw

Since angular momentum is conserved in the collapse,
lio; =1y

It follows that the ratio of the angular velocity after collapse to that
before the collapse would be:



2 2
Or_ L R _(695000)7 _ 4 a3, 10
o |i R?
so that
o, =4.83x10° x 0, =4.83x10° x 27 rad.s ™ =14051rad.s*
25 x 24 x 3600

This corresponds to 2236 revolutions per second, or a period of 0.45
milliseconds.

Angular momentum and torque as vector quantities

Suppose a body is at a position r and D .
has a linear momentum p= myv. From

our definition of the angular momentum,

it is the component of the momentum

at right angles to the radius vector r

that produces the “turning moment”. -

The angular momentum is therefore

L=mvrsind
where 6 is the angle between r and p, as shown in the diagram.
Another way of writing this is in terms of a vector product (or cross

product):
L=1rXmp

The order in a vector product is important
since

oy

AXB=-BxA i

To remember the convention,use a
right-anded set of axes, with unit vectors
i, jJand k along the x, y, and z axes. Then,

\ 4

i=j %k

This gives a “right hand rule”: imagine your right index finger pointing
along z, and your right thumb aligned along x. Then a clockwise rotation
of the thumb from x to y is like the motion of a screwdriver,



driving a screw along the positive z axis. Conversely, going clockwise
from y to x would require the index finger to point along the negative z
direction. This correspondsto jxi = -Kk.

Using this rule, since L = r x p, we can see
from the sketch on the right how to draw the
direction of the angular momentum L vector
when the position vector r and the momentum B
vector p are perpendicular to each other.

I—=

v

1=

Reversing the direction of p would reverse L
so that it pointed downwards, as shown in the
second sketch.

v

The conservation of angular momentum implies Y] r
that both the magnitude and direction of L are

constant with time. This means, for example,

that the planets have to move in fixed plane that L

passes through the Sun.

In exactly the same way we can see that a torque may also be
represented by a vector product: the magnitude of the torque depends on
the product of the radial distance from the pivot and the component of
the force normal to the radius vector:

1=
N

Clearly we can then write a torque as:

The direction of the torque vector is also given by the right-hand rule, so
that in the sketch above the torque points out of the image. It makes
sense that a clockwise torque has an opposite sign to an anticlockwise
torque, since if two equal and opposite torques are applied to a system,
they would cancel each other out.

It follows that when we write down the equation that relates the rate of
change of angular momentum to the applied torque, we should really
write this as a vector equation:

r dL
- dt
The new information that this equation gives us is that direction in which

the angular momentum changes is parallel to the direction of the applied
torque.



The precession of a gyroscope

A gyroscope is a flywheel supported

on a pivot so that we may investigate
how it is affected by external torques.

In the sketch the flywheel is rotating
clockwise when viewed from the pivot

P, so the angular momentum vector L
points along the axis, away from the
pivot, as shown. Since the axis is
horizontal, and the gyroscope is only
supported at the pivot, there will be a
torque I = Mgr due to the weight of the
gyroscope. This is a clockwise torque, so its direction is into the plane of
the paper, normal to the angular momentum L.

From what we saw in the previous subsection, the effect of a torque is to
produce a change in the angular momentum in a direction parallel to the
direction of the torque:

AL = TAt

This moves the direction of L in a perpendicular direction, into the paper.
Since the torque always remains perpendicular to L, the angular
momentum continues to follow the direction of the torque, and the whole
gyroscope precesses on its pivot. The axis of the gyroscope rotates
around in a circle (anticlockwise, viewed from the top). If we spun the
flywheel in an anticlockwise direction, the direction of the precession
would be reversed.



7.6 Comparing linear motion and rotation

The table below summarises analogies between linear motion and

rotation:
Linear motion Rotation
Mass m I Moment of Inertia
Velocity Vv W Angular velocity
Acceleration a a Angular acceleration
Force F I Torque
Newton’s 2" law F=ma| I'=l«
Work Fs rée Work
Power Fv lNw Power
Kinetic Energy v | 1o’ Kinetic Energy
Impulse Ft I't Angular
Momentum p=mv | L=lw Angular
Force = rate of change of :% :d_l— Torque = rate of change of
momentum dt dt angular momentum




7.7 Examples involving both linear and angular
impulses

Question 7j

A snooker ball has a radius R. It is set into motion by a sharp horizontal
impulse from the cue. At what height above the table should the player
strike the ball so that in the subsequent motion the ball rolls without

slipping?

Solution: suppose the cue strikes
the ball at a height h, imparting
an impulse J. The change in the
linear momentum is equal to

the linear impulse:

J=mv (i)
However, the impulse also produces
a rotation of the ball about the centre
of mass.

The angular impulse is
J(h—R)

but the height h=R(1—cos¢), so we can write the angular impulse as

— JRCOS¢@
(i)
The change in the angular momentum must be equal to the angular
impulse, so that
low=—-JRCcos¢@
(iii)
For a solid sphere the moment of inertia is | = %mRZ. From (iii),
therefore, we have
__5Jcosg
2mR
(iv)

Now, the condition for rolling is that Vv=wR. We can then compare v
from (i) to wR from (iv):



From this equation we find
Cos ¢ =—2

This is the condition for the ball to roll without slipping: it is only for this
value of ¢ that the linear and angular impulse are in the ratio required to
impart linear and angular velocities in the correct ratio for rolling. Since

h=R(l—cos¢)

the required height of the cue is

h=R(—cosg) =R(l— (~2/5))=7R/5=1.4R.

Question 7k

Show that the “sweet spot” on a cricket bat is 2/3 of the way down the
blade from the handle. If the bat strikes a ball at this point the batsman

feels no recoil from the stroke, whereas if the ball is struck above or below

this point, the bat jars the batsman’s wrists.

Solution: the diagram shows the bat sideways on. The blade is of length
2a and the impact of the ball is represented as the linear impulse ] at a
distance b below the handle. The recoil of the bat felt by the batsman is

represented by the impulse Jr at the handle.

The total impulse is equal to the change in
momentum of the bat so that

J+Jg=Mv
(1)

Here M is the mass of the bat and v is the
linear velocity of the centre of mass after the
impact.

The angular impulse gives rise to a change in
the angular momentum, with an angular velocity
@ around the handle:

o>

2a



bl =1, 0
(i)

where Iy is the moment of inertia of the bat about the handle end.

Assuming that the bat can be represented approximately as a rectangular
plate of length 2a, the moment of inertia about the centre of mass G is

lg =iMa’
so the moment of inertia about the handle is, using the parallel axes
theorem,

_ 2 _ 4 2

The condition for rotation of the centre of mass about the handle connects
the linear velocity of G and the angular velocity: V=aw.
It follows from (ii) that

(i)
Substituting for Mv from (i) we find

4
b] = 3 a(J + Jg)
3b

3b=4a

so the recoil impulse is:

(iv)

The recoil vanishes when

i.e. when

b=%a

Wl

This corresponds to 2/3 of the way down the blade from the handle.

If the ball strikes the bat above this point, it can be seen from (iv) that Jr
is negative, i.e. in a direction opposite to the impulse from the ball. When
the ball strikes below the sweet spot, the recoil at the handle is positive,
in the same direction as the impulse from the ball.



7.8 Motion in a circle

Here, we scrutinise the motion of a body constrained to move on a
circular path at a constant angular velocity. The key feature to
understand here is that while the magnitude of the linear velocity of the
body is constant, the direction of the velocity keeps changing, so the body
is subject to an acceleration.

Consider the positions r; and r» of a body in circular motion at two
successive instants. The movement of the body between these instants is
represented by the vector Ar = r, - ri, as illustrated:

Ar

o

If the angle 6 is small (i.e. the time interval is small) we may
approximate the chord 4r by the arc rg, where r is the radius of the
circle. Now, since the angular velocity is constant, we can write 6 = ot.
It follows that the linear velocity of the body is

Ar _rf rot
V=—=—-=——=uwFr
t t t

In the limit of & — 0 it is clear that the instantaneous velocity of the
body is perpendicular to the radius vector.

Now we need to look at the way the linear velocity changes with time. In
the figure following, the position vectors and the instantaneous velocities
v i1 and v, are shown in on the left.



Motion in a circle showing (left to right) the
position, velocity and acceleration vectors.

In the central diagram, the velocity vectors are drawn with a common
origin: these vectors also rotate on a circle at the same rate, but they are
rotated by n/2 in phase by comparison with the position vectors, since
each velocity vector is normal to its corresponding position vector. The
change in velocity is 4v = v, — v 1, and using the same approach as
above, if 6 is small we may approximate the chord 4v by the arc v§,
where v, the magnitude of the velocity, is the radius of the circle in the
central part of the diagram. Now we can write 6 = «ot, and it follows that
the linear acceleration of the body is

AV Vvl vot
Aa=—=—=——=@V.
t t t

Using the result v=oar, it follows that the acceleration of the body is

2

2 \Y
a=oV=wTrr=—
r

Again it is clear that in the limit of & —0 the instantaneous acceleration
of the body is nhormal to the velocity vector. On the right of the diagram
above, the acceleration vectors have been drawn with common origins. It
may be that the acceleration vector is always anti-parallel to the position
vector.

If we now plot the instantaneous position, velocity and acceleration
vectors on the same diagram, as in the diagram below, we see that the
acceleration vector points along the radius vector towards the origin O.



For this reason the acceleration in circular motion is called centripetal
acceleration (centripetal = seeking the centre).

Vi

\

For an object to move in a circle, a force must be applied to provide the
centripetal acceleration. For example a mass on the end of a string can
be constrained to move in a circle by the tension in the string:

Centripetal force

("“_VE)
F

m = Mazs= of ball
¥ = Radius of circle
W = Speed of ball Fath traveled by ball

In the case of a racing car travelling on a circular race track, the
centripetal acceleration is provided by the sideways frictional force of the
tyres on the track. For a satellite orbiting the Earth, or a planet orbiting
the Sun, it is the gravitational attraction that provides the centripetal
acceleration.

Question 71

A mass of 2 kg is attached to a cord 25 cm long and whirled in a
horizontal circle at 200 rev mint. What is the tension in the cord?



Solution: the centripetal force is

2
F :ma)zr:2x(%j x0.25=219N.

The conical pendulum

The illustration below shows a small bob of mass m attached to a cord of
length L. It rotates in a horizontal plane at a constant angular
velocity.

B e

This is called a conical pendulum, since the cord moves on the surface of
a cone. In this case the centripetal acceleration is provided by the
horizontal component of the tension in the cord: the equation of motion of

the mass is

mv?

Tsind=—=mw?R
R
(i)
Resolving the forces vertically gives
T cosfd =mg

We also have

E:sin¢9
L



so that from (i)
R
T—=mw?R
L
and therefore

T=mw’L=_19_
cosé

The angular velocity of the pendulum is therefore

\ Lcosd H

where H is the vertical height of the mass below the pivot point. The
period of the conical pendulum is then:

f=2—7[=27r\/E
@ g

Note that the period is independent of the mass of the body.

The orbits of planets, moons and satellites
Suppose a planet of mass M has a moon of mass m in a circular orbit

of radius R. Here the centripetal force that keeps the moon in its orbit
is provided by the gravitational attraction between the two bodies.

From Newton’s law of universal gravitation the force is



where G is the gravitational constant (6.67x10'* N m? kg™?) The
equation of motion of the moon is

Mm

ma)zR:G?

It follows that the angular velocity is

/GM
= —R3
and therefore that the period of the orbit is

27 R®
T=—2=27\|—
10} GM

This proves one of Kepler’'s law’s of planetary motion, that the square of
the period of an orbit is proportional to the cube of the radius.

Question 7m

Show that Newton’s law of gravitation can consistently explain both the
acceleration of a falling apple and the period of the Moon’s orbit around
the Earth. [The radius of the Earth is 6371 km and the radius of the
Moon’s orbit is 3.82x10° km.].

Solution: firstly the force on an apple of mass m at the Earth’s surface
is

F_gMm
RE

where M is the mass of the Earth and Reg is the radius of the Earth. The
acceleration of the apple is then

g=F/m=GM/RZ
Now g = 9.8 m s, and we are told that Rg=6.371 x10°m. It follows

that
GM =gR2 =9.8x (6.371x10°%)%? =3.977 x10"* m3®s 2.



From the value of G the gravitational constant (6.67x101*Nm?kg?) we
may deduce the mass of the Earth:

M =GM /G =3.977 x10"/6.67 x10 ! =5.96 x10**kg.

Now we can check this value for GM from the radius of the Moon’s orbit,
which has a period of 27.3 days. From above the period of the orbit is

27 | R
T=—2=27\—.
0] GM

We can rewrite this result to give:

4m?R3 472(3.82 x 10%)3

— — 15 3 o2
7 T (273 x 24 x3600)2 0396 x 107 mTs

GM =

This value agrees well with that deduced for the acceleration of the apple,
so we deduce that Newton’s inverse square law of gravity can explain
both the orbit of the moon and the motion of an apple as it falls off the
tree.

7.9 The stability of a vehicle travelling in a circle

When a motor vehicle rounds a bend in a road, the centripetal
acceleration is provided by the adhesion between the tyres and the road.
If the adhesion is inadequate (e.g. due to ice or oil on the road, bald tyres
etc.) then the vehicle will slide at a tangent to the curve and run off the
road. There is a second stability criterion due to the turning moment of
the friction about the centre of gravity. In the case of a motorcycle, the
rider leans sideways into the bend, producing an equal and opposite
turning moment. If a car were to take a bend at too high a speed, the
turning moment due to the friction could cause the car to overturn. Let
us examine these stability criteria in turn.



A motorcycle

%)
=

~

M.
Vv —

\

Mg

Suppose a motorcyclist is rounding a bend with a radius of curvature R
at a velocity v. The centripetal acceleration required is

a=v?/R

The maximum sideways friction that can be provided by the adhesion
between the wheels and the road surface is

f=uN

where us is the coefficient of static friction. If the mass of the rider plus
machine is M, then

N = Mg
and
f ::usN :lusMg

The greatest allowed acceleration is then
a=f/M=pu.g
so the maximum velocity at which the bend can be approached is when

a=Vv’/R=pu.g
giving
Vi =+ H4sOR

Now let us consider the effect of the turning moment of the friction.
Suppose that the centre of gravity G of the motorcycle plus rider is a
distance h above the ground and the rider tilts the bike at an angle 5 to
the vertical when rounding the bend. The stability condition is then that
the turning moment about the centre of gravity G due to the frictional
force f between the wheels and the road is balanced by the turning



moment of the normal reaction force N. Referring to the figure above,
we see that the condition is:

f hcoso =Nhsino
(i)
Now we can write
N = Mg
and
f =MVv?/R

Inserting these results into (i) gives
Mv2hcoss /R = Mghsin &
It follows that the angle § must satisfy the condition

V2

tando =—
gR

2
o= tanl(V—J
gR

so that

Question 7n

A motorcyclist goes around a bend of radius 30 m. If the coefficient of
friction between the tyres and road is 0.32, calculate

(a) The maximum velocity at which the machine may negotiate the
bend, and

(b) The required angle of inclination of the motorcyclist to the vertical.

Solution: from the first stability condition

Vi =/ 1sOR =+/0.32x9.8x30 =9.7ms ™

or 34.9 km.h'l. The angle is then

2 2
s=tanY — |=tan™ 3.7 =17.7°
oR 9.8 % 30




A car

Consider a car taking a bend of radius R at a velocity v. Suppose
that the height of the centre of mass above the road is h and the
lateral wheel base is 2b. The centripetal acceleration required is

a=v’/R
This is provided by the friction between both pairs of wheels and the road.
In the sketch we have taken the total friction for the outer pair of wheels
to be f, and for the inner pair to be f;. These are not equal, since the
normal reaction forces N,, N; for the outer and inner pair of wheels are
different. This is a consequence of the turning moment of the friction

forces about the centre of mass of the car.

Resolving the forces vertically we have:

N, + N; =Mg
(i)
and the equation of motion for the car is
f, + f, =Mv*/R
(ii)

Let us now consider the turning moments about the centre of mass. The
condition for stability is

(fo + fi)h=(N, —N;)b
(iif)



Substituting for (f, + f;) from (ii) we find

(iv)

Adding and subtracting equations (i) and (iv) gives:

M v?h
N, =—| g+—
° 2{9 Rb}

and

It can be seen that the normal reaction force on the outer wheels is
increased, while the normal reaction force on the inner wheels is
decreased. This fits with everyday experience (it is very noticeable in a
car with soft suspension, like the old Citroen 2CV). The condition for the
car to be on the point of overturning on the bend is that the normal
reaction force on the inner wheels vanishes. From above this condition is

so the maximum velocity for rounding the bend without overturning the
caris

gRb

max h

The other possibility is that the adhesion between the wheels and the
road may not be great enough, and the car would slide out of the bend.
In this case both f, and f; would have to reach the limiting values
fo=uN, and f, =xu.N;. Equation (ii) then becomes

1Eo + fi ::us(No + Ni):,usMg = MVZ/R
The maximum velocity to avoid sliding is then

Viex = :ung



Question 70

A car rounds a bend of radius 80 m at a speed of 50 km h-1, The car's
centre of gravity is midway between the wheels and is 0.6 m above the
ground. The car’s lateral wheelbase is 1.4m. Find the value of the
coefficient of friction necessary to prevent side-slip at this speed. Show
that the car will not have overturned.

Solution: the coefficient of friction to avoid side-slip is

Vi (50/3.6)°

_ _0.246.
#s79R T 9.8x80

The velocity at which the car would overturn is

_ gRb _ \/M =30.2ms™* =108.9 kmh™

b h 0.6

This is more than twice as fast as the actual speed of the car, so we
conclude the car would not overturn at 50 km h™.

7.10 Centroids

We have already encountered the concept of the "centre of mass" of an
object. The position of the centre of mass of a set of masses m; located

at points r; is given by
o = Yma/Sm
i i

1
tm = M Zmiﬁ
i

where M is the total mass. For a continuous mass distribution it is often
convenient to replace the sum by an integral ([ prdV).

or

Below, we will deal specifically with calculating the centre of mass of
laminae, i.e. bodies in the form of flat sheets of uniform density and
thickness.



Consider the lamina shown in the diagram. Suppose we want to find the
x-coordinate of the centre of mass. We may take the whole shape as
made up from elements of area in the form of thin strips perpendicular to
the x-axis, such as dA,, at position x;, as shown:

dA;

The mass of each element is

where p is the density of the material and t is the thickness of the
lamina. The value of the x-coordinate of the centre of mass is given by

2xdm o ptyxdA Y xdA

o T dm, ptIZdAi DXL

We can use the same method to find the y- coordinate of the centre of
mass. In this case we take elementary strips normal to the y- axis:

It follows then that
Zyidmi Ptz y;dA ZyidAi

- >dm, B PUEdA B > dA

yCM



The centroid and the centre of mass

The centroid of an object is its geometric centre, relating to the way the
volume (or area in the case of a lamina) is distributed. If the object has a
uniform density, then the centre of mass will coincide with the centroid.

Use of symmetry to help determine the centroid or com

If a lamina has an axis of symmetry,
then the centre of mass must lie on
that axis. An obvious example is a
rectangular lamina, as shown in the
sketch. This has two symmetry axes

at right angles to each other, parallel

to the sides. If the lamina were
reflected in the symmetry axes, it
would map back onto itself. It follows
that the centre of mass of a rectangular
lamina most be where the two symmetry
axes Cross.

In the case of an equilateral triangle, there are three symmetry axes with
angles of 60° between them. The centroid of the triangle is G, where the
symmetry axes cross. Some simple trigonometry shows that AG = %5 AD,
so the centroid is two-thirds of the way from each apex along the
perpendicular bisector of the opposite side. This can be shown to be true
for any triangle.




Centroids of composite laminae

Quite often we come across examples where a lamina can be broken
down into a number of discrete elements, whose individual centroids are
easy to find from symmetry.

In this case we can find the centroid of the composite lamina simply by
weighting the centroids of the individual components by their
corresponding areas. Suppose the composite lamina is made up of N
individual components whose areas are A; and whose centroids have
coordinates x; and Y.

Then the centre of mass (or centroid) of the whole has coordinates

> XA > v.A
Xem = I:%\I and Yom = .:k
2. 2. A

Question 7p

A circular hole of 50 mm diameter is cut in a circular disc of 120 mm
diameter, the centre of the hole being 30 mm from the centre of the disc.
Find the position of the centroid of the remainder of the disc.

4
N/ X




Solution: we choose our origin to be the centre of the disc, so that before
the hole is cut the centroid is at (0,0). By symmetry the y-coordinate of
the centroid will still be at y = 0 after the hole is cut, since the x-axis is
still a symmetry axis.

Let the remainder of the disc have area A; and the area of the hole be
A,. The total area of the disc before the hole is cut is

— 7 x 60% =11309.7mm?.
ot

The area of the hole is A, = = x 25° =1963.5mm?, so the area of the
remainder after the hole is cut is

A = A, — A, =11309.7 —1963.5 = 9346.2mm*.

Let the centroid of the hole be at x, =-30mm, and the centroid of
remainder be at X,,. We want to determine X,-

If we add the piece cut out of the disc, of area A,, to the remainder we
have the original disc, whose centroid is at x = 0. It follows therefore

that
Aixcom + A2X2 :Atot x0=0

. __AX __ 1963.5x(-30)
A 9346.2

We then have

=6.3mm

The centroid of the remainder therefore has coordinates x = 6.3 mm and
y = 0.

Question 7q

Find the position of the centroid of the lamina shown:



Solution: this “"T” shape is clearly made up of two rectangular laminae, as
shown below:

.. BOMM___
N
Aq 110mm
\"4
/N
1
A, E 40mm
|
1
\%
<-->
10mm

By symmetry the centroid of the "T” must lie along the vertical centre
line, 30mm from the left hand edge.

To find the vertical position of the centroid we break it down into the two
rectangular laminae shown above. We can measure the positions of the
centroids from the top edge of the "T”. The cross-bar has area A; =
60x10 mm? = 600 mm?, and y; = -5mm, while the upright has area A;
= 40x10 mm? = 400 mm?, and y, = —(10+20) mm = -30 mm.

The total area is (A;+A2) = 1000 mm?. It follows, therefore, that

Zi: YiAs (-5) x 600 + (—30) x 400 —15000
Yeom = Z = = =—15mm.
A 1000 1000

The centroid of the “T” shape has coordinates (30 mm, -15 mm) with
respect to an origin at the top left hand corner of the "T”.
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