
 

Section 2 Elasticity 
 
 

One of the standard ways of measuring a weight is to use a calibrated 
spring balance.  This relies on the fact that when a force is applied to a 

spring it stretches by an amount that is proportional to the magnitude of 
the force.   When the force is removed the spring returns to its original 

length.  This is a simple example of elastic behaviour.  We are used to 
seeing elastic behaviour in rubber bands: they can increase in length by 

large factors (e.g. bungee cords) but will return to their original length 

when the force is removed.  In fact all solids stretch when loaded, but the 
length changes are usually too small to be seen readily by the naked eye.  

 
 

2.1 Hooke’s Law, Tensile Stress and Young’s Modulus   
 

Suppose we secure the top end of a vertical wire of length L and cross-
sectional area A. We then load the other end by hanging different masses 

on it.  As long as the load is not too great we will find that the wire 

behaves elastically: the change in length of the wire L is found to be 

proportional to the applied load.  A graph of load (force F ) against the 

extension L gives a straight line: 

 

 
 

 
 

 
 

 
 

 
 

 

This is an example of Hooke’s Law, which states that the change in length 
of a material is proportional to the applied force.  The stretching of the 

material sets up internal forces which balance the applied external force.  
Most solids obey Hooke’s Law, at least for moderate loads.  We can 

express Hooke’s Law mathematically by: 
 

     F = k L,     (2.1)  

 

where the constant k is sometimes called the mechanical stiffness and 
has the units of newtons per metre (N m-1).  If we are talking about a 

spring, the k is called the "spring constant". 
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The problem with equation (2.1) is that the value of the stiffness k 
depends on the dimensions of the wire, in particular its cross-sectional 

area and its length.  For example if we took a wire of the same material, 
but with twice the cross sectional area, we would find it stretched only 

half as much.  Similarly if we doubled the length of the wire, we would 
find that it stretched twice as much.  We can take account of these factors 

by writing Hooke’s Law in terms of the Stress and the Strain. 
 

Stress is defined as the force acting per unit of area; it is often given the 
symbol  (Greek sigma) and its units (force/area) are N m-2.  Since a 

force per unit area is the same as a pressure, these are the same units as 
are used for pressure, and therefore we can call the units of stress 

"pascals" (Pa).  So, we have   = F / A. 

 

The case above, of a loaded wire, is an example of tensile stress.  In the 
case of heavy load on top of a vertical metal bar, we would have 

compressive stress.  

 
Strain: this is defined as the fractional change in length of a material.  

Strain is often given the symbol  (Greek epsilon) and is dimensionless, 

since it is just the ratio of two lengths: 
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We can now transform Hooke’s Law, eq. (2.1) into a relation between the 
stress and the strain, dividing both sides by the cross-sectional area: 
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This equation is in the form: 

 
Stress = Modulus  x  Strain 

 
and can be written as 

 

      E  or  
L
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Here the quantity E is called Young’s modulus of elasticity.  Here,  
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However, the great advantage of writing Hooke’s Law in the form of  

eq.(2.3) is that Young’s modulus E, unlike the stiffness constant k, does 
not depend on the dimensions of the material.  It is an intrinsic property 

that depends ultimately on the strength of the binding forces between the 
atoms of the material.  Notice that since the strain is dimensionless, the 

units of E, the Young’s modulus are the same as the units of stress, 
namely N m-2 or pascals (Pa). 

 
The table below gives values of the Young’s modulus for various metals 

and alloys, along with some other elastic moduli to be discussed later.  It 
can be seen that typical values are of order 100 GPa (1 gigapascal = 109 

pascals).  In some engineering texts they quote values in kN mm-2, which 
is the same as a GPa.   

 

 

Material E 

(GPa) 

G 

(GPa) 

B 

(GPa) 

Tensile Strength 

(Mpa) 

Aluminium 71 26 74 150-450 

Copper 130 48 138 300-500 

Iron 211 82 170 400-600 

Lead 17 5.5 46 10-15 

Tin 45 18 58 100-150 
Brass 37 37 112 350-550 

Mild steel 212 82 169 1000-1200 

                           
 

 

Question 2a 
 

A rectangular bar whose cross section has the dimensions 5 mm  x  20 
mm supports a mass of 500 kg.  Calculate the stress in the bar. 

 
Solution: the force on the bar is 

 
F   =   mg   =   500  x  9.81 N   =   4905 N.    

 

The cross-sectional area of the bar is  
 

A   =   5  x  20  mm2   =   10-4  m2 
 

So the stress is  F/A  =  4.9  x  107 Nm-2   =   49 MPa. 
 

 



 

Question 2b 
 
A wire of length 2 m is acted on by a tensile force.  What is the strain in 

the wire if it extends by 0.25 mm?  
 

Solution: the strain is 
 

     
L
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10 0.25 3
    =    1.25  x  10-4              

 

 
 

Question 2c 
 

A steel rod  1 m  long is subjected to a tensile stress of  100 MPa.  The 
extension of the rod due to the stress is measured to be 0.5 mm.  Find 

the value of Young’s Modulus for the material of which the rod is made. 
 

Solution: the strain is  
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10 0.5 3
 = 5  x  10-4 

  

so Young’s modulus is: 
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2.2  Shear Stress and the Shear Modulus 
 

Like the kind of stress considered above, a shear stress is also a force 

per unit area, but in this case the direction of the applied force lies in the 
plane of the area rather than perpendicular to it: 

 
 

 
  

 
 

 
 

 
 

 
 

 

 
 

The figure shows the response of a material to a shear stress.  Imagine a 
cylinder of length L and cross sectional area A.  One end is firmly attached 

to a surface, the other end is subjected to a force F parallel to the face.   
The shear stress is given the symbol  (Greek tau): 

 

A

F
 =    symbolsin 

Force Resisting Area

force Applied
 = StressShear 


 

 

 
The material responds to the shear stress by deforming sideways through 

a small distance x.  

 

We define the shear strain as the ratio between the relative displacement 
(Δx) between any two planes and the perpendicular distance (L) 

separating the two planes. 

 

In the example illustrated above, the shear strain is tan


L

x
, where  is 

the angle of deformation. 

 
If the shear stress is not too large, we would expect the shear strain to be 

proportional to the shear stress.  We can therefore define another type of 
modulus, called the "modulus of rigidity", or the "shear modulus": 
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shear stress = shear modulus  x  shear strain 
 
or, 

 

 tanG
A

F
   

 

 
For a small shear strain,  tan     (when  is measured in radians) and so 

we may approximate the equation to: 
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A
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Shear Stress 
                      

The calculation of shear stress is problem-dependent.  It is necessary to 
identify carefully the area that resists the shear force.  In all cases shear 

stress is calculated from this expression: 
 

   

A

F
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Force Resisting Area

force Applied
 = StressShear 


 

                

Two typical cases are illustrated below.                                                                     
 

 

A Riveted Joint:               F 
 

 
 

Let the diameter of the rivet be d.   The shear stress is then calculated 
from: 

                      =  
F

A
       where   A =  

 d

4

2
   (cross-sectional area) 

 



 

 
                                                                                                        

Punching a hole in a plate: 
 

Let the plate thickness be t and the 
diameter of the hole be d.  If the 

shear force required is F then the 
shear stress is calculated from 

  

            =  
F

A
 ,  

 

where   A  =  d t. 

 

 

 
    

 
 

 
 

2.3 Hydraulic Stress and the Bulk Modulus 
 
Imagine a body subject to a uniform compression over all its surface:   

 
 

 
 

 
 

 
 

 
 

 
 

 

 
This sort of situation would occur, for example, if the body were taken 

down to the sea bed.  The weight of water above creates a high pressure, 
known as hydrostatic pressure, which acts in all directions. 

 
We can calculate the magnitude of the pressure as follows: imagine a 

column of water of unit cross sectional area (1m2) and height h.  Then the 
volume of water in this column will be  (1  x  h) m3  =  h m3.   
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The mass of water in the column is then = volume  x  density  = h , and 

is in kilograms, where    is the density of water (in kilograms per cubic 

metre).   

 
The weight of this column is then equal to  hg  (in newtons) where g is 

the acceleration due to gravity (9.81 m s-2).  
 

This is then the force acting over a unit area (1m2), so the pressure will 
be  hg/(1 metre squared)  =   hg  (N m-2 or Pa).   

 
Suppose we want to know the pressure at a depth of 1 km.  Then, taking 

 = 1000 kg m-3 and g  10 ms-2, we have: 

 

pressure   =   103  x  103  x  10   =  107 Pa 
 

This is about 100 times normal atmospheric pressure. 
 

When subject to hydrostatic pressure, or hydraulic stress, all materials 
decrease in volume.  The hydraulic stress is the force acting per unit area 

of surface, which is just the pressure p.  The hydraulic strain is the ratio 

of the change in volume to the original volume of the body, i.e. 
 

 hydraulic strain   = 
V

V
 

 

The constant of proportionality between the hydraulic stress and the 

hydraulic strain is called the bulk modulus, B, so we have: 
 

hydraulic stress  =  bulk modulus  x  hydraulic strain 
 
or 
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Question 2d 
 

The bulk modulus of water is 2.2 GPa.  Calculate the fractional change in 

the volume of water at the bottom of the Pacific Ocean, at a depth of 
4000m. 

 
Solution: from what was written above, the pressure at a depth of 4000 

m will be  4  x  107 Pa.  The hydraulic strain V/V for the water is just the 

pressure divided by the bulk modulus, so that 
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                         (or 1.8%) 

 
 

 
 

The bulk moduli for some common metals are listed in the table given 
earlier.  The values for solids are generally higher than those of liquids, 

for example B for iron is 170 GPa.  This means that the fractional volume 
change for iron would be only 0.025% at the bottom of the Pacific Ocean. 

 

 
 

2.4 Tensile Testing of Materials 
 

So far we have considered relatively small stresses and strains, so that 
the elastic limit is not exceeded.  But how do we know when we are 

working within the elastic limit?  The mechanical properties of materials 

are strongly dependent on their previous mechanical history, by their 
chemical composition (if we are dealing with an alloy) and by the heat 

treatment they have received.  For example, to make a metal ductile it 
needs to be well annealed and free of precipitates. We can increase the 

strength of metals by hardening techniques (e.g. cold-drawing or rolling) 
and by precipitating secondary phases.  Hardening tends to tangle up 

dislocations, while precipitates act as pinning centres for dislocations. In  
both cases the dislocations are prevented from moving.  As a result the 

material is brittle but strong.   
 

Tensile testing allows us to establish the elastic limit for a particular 
material, but also shows how a sample behaves when the elastic limit is 

exceeded. The figures following show the stress/strain plot typical of the 
tensile test curves for a ductile material and a brittle material.  

  



 

 

 
  

                 
 

 
 

 
 

 
 

 
 

 
 

 

 
To find the elastic limit, increasing tensile forces are applied to a regularly 

shaped sample of material and the resulting strains are measured.  Below 
the elastic limit (the section of curve labelled OP in the figure) the strains 

are proportional to the applied stresses.  The point P is called the 
proportionality limit.  Above this point the curve departs from a straight 

line, but below the elastic limit at Q the strains disappear when the 
stresses are removed.  Going above Q leads to a permanent strain when 

the stresses are removed.  R is called the yield point: here the specimen 
extends with little or no increase in load.  The point of maximum stress S 

defines the ultimate tensile stress, or "tensile strength" of the material:  
 

tensile strength   =   maximum tensile stress 

 
At this point, the extension becomes localised, and the specimen acquires 

a "waist".  At point T the specimen fractures. 
 

In actual samples, the points P, Q and R may coincide or may be difficult 
to distinguish.  Note that for a brittle material the sample fails before or 

near to the yield point. 
 

Besides tensile strength, compressive strength and shear strength may be 
similarly defined.   

 
In engineering, a material should never be put into a situation where it 

might be subject to a stress comparable to its strength.  To avoid this 
happening, a suitable safety factor is chosen at the design stage.  The 

permissible stress is then obtained by dividing the strength by the 
safety factor.  
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