Section 6: Collisions

For an isolated system, the total linear momentum is a conserved
quantity. If two bodies of mass m; and m, interact only with each
other then

muv; + myv, = constant

This principle might seem to have rather limited usefulness, since it is not
very often that we deal with isolated systems of particles. For example in
a car crash, both cars are in contact with the road and probably at least
one driver will have applied the brakes. Both cars are therefore subject
to frictional forces with the road, and so the “system” (comprising the two
cars) is not strictly isolated. However the impulse involved when two cars
collide involves a large force acting for a very short time. In such a short
time the change in momentum of the cars due to the external frictional
forces will be negligible, compared to the change in momentum due to
the impulse of the collision. It follows that we can usually make use of
the principle of conservation of linear momentum even when the system
is not isolated.

Question 6a

A car P of mass 1200 kg travels along a level road at a speed of

8 m s™!. The driver notices that car Q ahead has stopped and
immediately applies the brakes, causing the wheels to lock. The car P
slides a distance of 10 metres before it hits car Q at a speed of

2 m st Car Q has a mass of 800kg. Immediately after impact car P
moves with a speed of 1 m s™!. Suppose the collision has a duration of
0.1 seconds: analyse what happens in the collision as far as possible.

Solution:

(i) First consider the braking of car P. The deceleration can be found
from:

vZ =u? + 2as
and withu=8ms?, v=2ms?ands =10 m, we get

vi-u® 4-64
23 20

a= —3ms™




The braking force required to produce this deceleration is

Fy,are = Ma =1200 x 3=3600

The loss of kinetic energy of car P in the braking process is

AKE) = Yomv? — Yomu? = Fyg.5 = —1200 X3 x10 = —36 kJ

(ii) Now suppose we can apply the conservation of linear momentum to
the collision. Let car P have velocities vpi = 2ms™? and vpr = 1 ms™
before and after the collision, and likewise the velocities of car Q are

voi = 0 and vor. The conservation of momentum gives

MpVp; +0=MpVp; + MGV
Then

Mp (Ve —Ver)  1200(2-1)

Qf —
m, 800

=15ms™

The loss of kinetic energy in the collision is

A(KE) = KE; — KE; =1mpvp; + 1movs; —impvp,

=11200 x (1* — 2*) + 1800 x1.5* =-900J

Notice that the loss of KE in the collision is much less then the loss of KE
in the braking process: most of P’s KE has been dissipated before the
collision.

(iii) Now we work out the impulse from the change in the momentum
during the collision: let the impulse be J, then the impulse on P due to
collision with Q, Jpg is equal and opposite to Jgp the impulse on Q due to
collision with P:

Jop = A(MuVg) = MoV =800x1.5=1200Ns.

The average force on Q in the collision is the impulse divided by the
time:

F

C

ollis = Jop / At=1200/0.1=12000N .



The force involved in the collision is therefore much greater than the force
involved in braking.

(iv) The change in momentum due to the external forces (braking force)
during the collision is only

App€=F, At =-3600x0.1=—-360Ns,

while the change in momentum due to the interaction between the cars
during the collision is

A pP"" =3, =—1200Ns

The effect of the external forces is therefore only 3% of the total effect.

Although this is an artificial problem, it illustrates the essential point,
which is that a collision between two bodies results in a large force acting
for a short time. In such a short time there is a negligible effect on the
momentum due to external forces.

Hence, we can generally use the principle of conservation of momentum,
whether there are external forces or not:

Total linear momentum aftera collision =Total linear momentum before a collision

We must remember that momentum is a vector quantity, so that both the
magnitude and direction of the final momentum must equal the
magnitude and direction of the initial momentum.

6.1 Centres of mass

Consider a system consisting of two

masses mi and m,. Let the positions M m;
of the masses be x; and x>. The m C N\
centre of mass is at the point C, W Xo X2
whose position is xp, along the line of

centres of the masses. To determine
the position of the centre of mass we take moments of the masses about
C:
My (Xo — %) =M, (X, — Xo)
Rearranging we find
Xo (M +M,) =m,X, + M X



So that

_MX +MyX,
0=
ml + m2

From the way we have worked out the position of C, it is clear that if the
masses were attached to a light bar and pivoted at C, then the weights of
the two masses would balance. We can generalise this treatment to
define the position r of the centre of mass in three dimensions in terms
of the position vectors r; and r>:

min + mpn

T =
-0 m1+ m,

We now differentiate with respect to time:

dry muv + MRy

E N my +m2

The numerator on the right hand side is just the total momentum of the
system. It follows that if the total momentum is conserved, then the
centre of mass moves with a constant velocity.

6.2 Elastic and inelastic collisions

An elastic collision is one in which the total kinetic energy of the bodies
after the collision is the same as it was before the collision. An example
would be two snooker balls colliding: snooker balls are made of a hard
material that does not deform easily, so that energy is not dissipated in a
collision.

We saw in the collision between the two cars earlier that there was a
considerable loss of kinetic energy in the collision. The energy that
disappeared went into deformation of the panel-work, generating heat,
sound, and so on. Such a collision, in which the kinetic energy is not
conserved, is called an inelastic collision. The fraction of kinetic energy
lost in an inelastic collision depends on the circumstances. However an
extreme example, known as a completely inelastic collision, is the case
where the two bodies stick together and move with a common velocity
after the collision.



Elastic collision in one dimension

Consider two objects with
masses m; and m; moving ;
along the same straight line. Before
Let their velocities before and
after they collide be ui, u>
and vi, v, respectively.

Conservation of momentum After

yields: Vi

mu; + myu, =myV, + m,v,
(1)

For an elastic collision we can

equate the kinetic energies before and after the collision:

1 2 1 2 _1 2 1 2
ZMly + oMUy =5MV, +5M,V,

Rearranging (i) gives
m; (Uy —v;) =—m, (U, —V,)

From (ii) we get
2 2 2 2
my(U” —v,")=-my(U,” —v,")

Using the identity a’> —b% =(a—b)(a+b), equation (iv) becomes:
my (U — V) Uy +Vy) =—m, (U = V) (U, +V,).

We now divide this equation by equation (iii). This gives:

(U +vy) =(Uy +Vv,)
or equivalently
(V1 _Vz) = _(ul - U2)

This shows that the relative velocity after an elastic collision is the

uz

V2

(ii)

(iii)

(iv)

(v)

negative of the relative velocity before the collision. This equation may



be combined with the momentum equation, (i) or (iii), to find v; and v,
separately: first, from (v) we write v, as:

Vo = (U —Up) +vy
then substituting into (i) gives

_2myu, +u (m —m,)
1~ /
m, +m,

whence

_2myuy +Uuy(m; —my)

2
m, +m,

Let’s look at some special cases:

(a) Equal masses, my =m,=m

In this case Vv; =U, and V, =U,: the kinetic energies of the masses
are interchanged in the collision.

(b) Collision with a stationary ball

In the general case where m; #m,, but u; = 0, we find

m, —m 2m
(my —m,) 2)u1 and V, = L

v, = =——1
m, +m, m, +m,

U,

In the case of equal masses, e.qg. if a snooker ball with velocity u;
strikes a stationary snooker ball along the line of centres, the first ball
stops dead (v; = 0) and the second ball moves off with velocity v, =
ui. All the kinetic energy is transferred to the second ball.

(c) Very heavy “target”, i.e. m>>> m;,

In this case we can ignore m; compared to m,. The equations
become



This shows that the velocity of the “target” is unaffected by collision
with the light projectile, but the projectile has a large change in
velocity. Consider a particular case of a gas molecule hitting the wall
of its container. If the wall is stationary (u> = 0), the molecule
bounces straight off with the same speed, but in the opposite

direction: V, =-U,. Suppose the wall is now moving towards the
approaching molecule with velocity u, =—U. The velocity of recoil of
the molecule is now Vv, =-2u-—u, i.e. it picks up twice the velocity of

the wall, and gains kinetic energy in the process. This is why a gas
heats up if it is compressed adiabatically.

(d) Very heavy “projectile”, i.e. m;>> m,

This is just the inverse of (c¢), when we can ignore m, compared to
m;y. The equations are:

v,=U, and V,=2U,-U,

Suppose we fire a cannon ball at a stationary golf ball (u; = 0). Then
the first equation tells us that the velocity of the cannon ball is
unaffected by the collision, but the golf ball picks up twice the velocity
of the cannon ball! Where does the factor of two come from? Well
remember that in an elastic collision the relative velocity after a
collision is minus the relative velocity before the collision. In the

present case the relative velocity before the collision is u, —u, = u,.
After the collision the relative velocity is v, —Vv, =U; —V,, which equals
—Uu,, i.e. the negative of the initial relative velocity.

Question 6b

Two bodies of mass m and 1.5 m move along the same line and
undergo an elastic collision. The initial velocities are 1 m s
and -0.3 m s™. Calculate the final velocities of the bodies.

Solution: the momentum equation becomes:

mv, +1.5mv, =mx1+1.5mx (-0.3) = m—0.45m =0.55m

so that

v, +1.5v, =0.55
(1)



The relative velocity equation gives

Vi =V, =—(U; —Up) =—(1-(-0.3))=-1.3
(i)
Subtracting (ii) from (i) gives

2.5v,=185, so v,=0.74ms™,
and then
V, =V, -1.3=0.74-1.3=-0.56 ms™

Completely inelastic collisions in one dimension

In a completely inelastic collision
the two colliding bodies stick
together after the collision and
move with a common velocity v m U
as shown in the diagram.

Before

In this case, conservation of

momentum gives
After

mu; +m,U, = (M, +m,)v v
The final velocity is therefore

(my +m,)

The kinetic energy lost in the collision is
2 2 2
A(KE) =Z(m, +m,)v° —imu,” —1m,u,”.
Substituting the value of the common velocity v leads to the result:

m;m,

AKE) = _Z(ml +m,)

(U, —u,)?



Question 6¢

In the days before high-speed
timing devices, the speed of a
bullet was measured using a
ballistic pendulum, sketched
opposite. The bullet of mass m

is fired into a wooden block,

of mass M, which is supported on
two long cords so that it can swing

upwards. The maximum height, h,

reached by the block is measured. )
This allows the initial velocity u \
of the bullet to be estimated. u’

Suppose that m =9.5g and

M = 5.4 kg and that the height

reached is h = 6.3 cm.

Solution: conservation of momentum gives:

mu =(M + m)v

(i)

The kinetic energy of the system (block + bullet) is converted entirely
into potential energy when the height is increased to h. It follows that

1(M +m)v? =(M +m)gh,

from which we find

v=,2gh

Inserting this result into (i) gives

M +m 5.4+ 0.0095
"= J2gh = 21000 8% 0.063 = 632.7 ms .
m VY 0.0095 V2x9.8x

How much of the original kinetic energy survives the collision? The initial
kinetic energy is $mu® =10.0095x 632.7° =1.901kJ. The kinetic energy

immediately after the bullet hits the block is equal to the gravitational
potential energy acquired by the block and bullet when they have swung
up to their ultimate height 6.3 cm. This is

(M +m)gh = 5.4095x 9.8x 0.063 = 3.3 J.



This is only 0.175% of the initial kinetic energy. The rest goes into
deformation of the block, the generation of heat, and so on.

Collisions in two or three dimensions

In this case we have to write the conservation of momentum as a vector
equation:
mu + mu; = my; + mpy;

Obviously we can resolve this equation into two or three components, but
sometimes it is easier to use the vectors directly.

Question 6d

Two skaters Alf and Bettie collide and embrace, causing a completely
inelastic collision. Alf, whose mass is 83 kg, was initially skating due east
at 6.2 km/hr. Bettie’s mass is 55 kg. She was initially skating due north
at 7.8 km/hr. What is the velocity of the pair after the collision?

\ Y
v
Ma+ Mg
0
Ma >
Ua X
N
Us
@)

Line of CoM

Solution: conservation of momentum gives:

mAU, +Mglg =(M, + Mg)V
(i)
We may first take the x components of the momentum equation:
muu, +mg (0) =(m, + mg)vcosd
(i)



Taking the y components gives:

M, (0) + mgug =(M, + mg)vsiné
(iii)

We now divide equation (iii) by equation (ii):

meU sind
B"B _ =tan@
myu, Ccosé

So that

0 =tan| Mels |_ tan‘l(55 X 7'8j =39.8°
m,u, 83x 6.2

Knowing the angle 6 we can now find v from equations (ii) or (iii):

MgUg 55%x 7.8

V= — = =4.86km/hr
(M, +mg)sind  (83+55)x0.64

So the final velocity of the skaters is 4.86 km/hr at an angle of 39.8°
north of east.

Question 6e

A sphere of mass m collides elastically with an identical sphere which is
initially at rest. Show that their velocities after collision are at right
angles (provided they are both non-zero).

Solution:

Vi

Vi1

Momentum conservation gives mu = my; + myv,, using obvious
notation. We can cancel the common factor of m.



Let us take the scalar product of u with itself:

uu = ut = (v + ) (m+ ») = v?+ v+ 2p

(i)

Now we are also told that the collision is elastic, so the kinetic energy is
conserved:

2

1 _1 2 1 2
Emu _Emvl +§mv2

Cancelling the factor of m/2, we have:

u®=v/ +v3
(i)
Subtracting equation (ii) from equation (i) we find

V¥, =0

It follows that the velocities of the spheres after the collision are at right
angles.

Newton’s law of restitution
We saw above that for an elastic collision the relative velocity along the

line of impact after a collision is equal to minus the relative velocity
before the collision:

(v, =vy)=—(u, —u,).
Let us define the relative velocities before and after the collision as

The condition for an elastic collision is then

Newton had a very useful insight into what happens in an inelastic
collision. He suggested, after making experiments, that if we resolve the
velocities along the line of impact, the parallel component of the relative



velocity is reversed in sign after the collision, but is reduced by a factor e
(<1). The component of the relative velocity perpendicular to the line of
impact is not affected by the collision. The factor e is called the
coefficient of restitution, and its value depends on the properties of the
materials out of which the two objects are made.

Newton’s law of restitution says, therefore, that for an inelastic collision:

1 1 L
r .

=—eu, and V., = U,

Vv

Here the symbols !! and * refer to components parallel and perpendicular
to the line of impact. This "law" is not exactly and invariably true: but it
is a good approximation to what often happens when collisions occur.

Application to inelastic collision in one dimension
Consider two objects with masses m; and m; moving along the same

straight line. Let their velocities before and after they collide be u;, u>
and vi, v, respectively. Conservation of momentum yields:

mu, + m,u, =m\Vv, + m,v,

(1)
We can introduce relative velocities by writing
U, =u, +U,
and
V, =V, +V;
Equation (i) can now be rewritten as
(my +my)u, + myu, =(mg +m,)v, +m,v,
so that
(Vp —Uy) =———2—(v, —U,)
1 1 m1 N m2 r r
(i)
It also follows from (i) that
(v, —u,)=4+—2—(v, —u,)
2 2 m1 N m2 r r

(iii)



The change in the kinetic energy for an inelastic collision is:
AKE)=KE, —KE. =imyv,” —imu,” +im,v,* —im,u,’
= f i — 2"V 2'thY 2'12V2 2 U2

z%ml(vl +Up)(vy —uy) +%m2 (v, +U,) (v, —U,)

After a bit more manipulation, using equations (ii) and (iii), it is
straightforward to show that the loss of kinetic energy in the collision is:

AKE) =122 2y
m1+m2

If we now use Newton’s law :v, =—eu,, we find

m,m,

A(KE) =—1
m, +m,

(1-e*) u’.

This makes an important connection between the coefficient of restitution
e and the degree of inelasticity, in terms of how much kinetic energy is
lost in the collision. For a perfectly elastic collision, A(KE) = 0, and this
corresponds to e = 1. For a completely inelastic collision, in which the
bodies stick together, their relative velocity is zero, so we deduce that
e=0. In this case the loss of kinetic energy is

mm
A(KE) =—3 =22y
l+m2

r

Bouncing balls

A ball thrown into the air follows a parabolic trajectory, reaching a
maximum height

Z... =V7129
The horizontal distance travelled before it reaches the ground is
Xoex =2V,V, 10

As it reaches the ground its vertical component of velocity is -V;, , which
is the negative of its initial value



Suppose the ball now bounces and the coefficient of restitution is e.

Then the ball’s new vertical component of velocity will be + eV, but its
horizontal component of velocity will be unaffected. After the first bounce
the height reached will be smaller by a factor of e? but the distance to the
next bounce is reduced by a factor of e. Each subsequent bounce will be
scaled in height and range by additional factors of e and e respectively,
as shown below:

10
= 87
g 4
2
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The trajectory of a ball thrown with a velocity of 14 m s™
at an angle of 75° to the horizontal.
The coefficient of restitution between the ball and the ground is 0.5.

Question 6f

A ball thrown vertically reaches a height of 10 metres. If the coefficient
of restitution between the ball and the ground is 0.9, how long will it take
the ball to come to rest?

Solution: the time to the first bounce is
t=2v,/d
We can find the velocity from the height:

.. =V72129
It follows that



t, =2,2z,,,/9=2857s
Then the time to the second bounce is et;, and so on. The total time is
2 3 2 3
t., =t +et, +et +e’t +---=t(l+e+e°+e’+--)

The series in the brackets is just an infinite geometrical progression

whose sum is % It follows that the time for the ball to come to rest
—€
is:

o o_ .t 2857

ot =28.57s
1-e 1-09

Question 6g

The cue ball in a game of billiards is travelling with a velocity u when it
strikes a red ball at an angle ¢ to the line of impact. If the coefficient of
restitution between the balls is e, find the angle at which the cue ball
travels after the collision.

Solution: conservation of momentum \
along the line of impact gives:

Mu COS¢ = mv, Cos@ + mv, w

Cancelling the mass on both sides gives

Vi

Vv, C0SO +V, =UCO0S¢
(1)

From Newton’s law of restitution the component of relative velocity
perpendicular to the line of impact remains unchanged, so that

v,sin@ =usin ¢
(ii)
Parallel to the line of impact Newton’s law gives:
V, —V; cosd =—e(0—ucosg) =eucosg
(iii)



Adding (i) and (iii) leads to:
V, =3(l+e)ucosg
Subtracting (iii) from (i) gives:
V,C0s6 =5 (1—e)ucosg.
We now divide (ii) by (iii) to give:

v;singd  using
v,c0s6 5 (1—e)ucosg

and it follows that
_ 2tang

tan g =
(1-e)

Notice that for an elastic collision, when e =1, this always gives 6 = r/2.
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