
 

Section 3:   Vectors, Forces and 

     Static Equilibrium  
        

 
In this section we will study how a body may remain in static equilibrium 

under the action of several forces.  Forces are vector quantities, meaning 
that they have direction as well as a magnitude.  To understand static 

equilibrium, therefore, we will need to know how to add forces together 
and resolve the action of a force onto a particular direction.  To this end 

we start with a short tutorial on vectors. 
   

 

3.1 Vectors 
 

A scalar is a quantity that has a magnitude only: examples include mass, 
temperature, energy and so on. A vector is a mathematical representation 

of a quantity that possesses both a magnitude and a direction.  There are 
many examples from everyday life where we could invoke a vector 

representation, for example a journey across the campus from the School 
of Physics and Astronomy to the Student’s Union could be represented by 

a sequence of arrows: 
 

 

 
 

 
 

 
 

 
 

 
 

 
Here the direction of the arrow gives the direction travelled in each 

section and the length of each arrow represents the distance travelled 
before a change of direction.  Other examples of vector quantities include:  

 

 Velocity – for example in weather forecasts the wind velocities 
across the UK are represented as a map covered with arrows, 

representing the strength and direction of wind. 
 Momentum: this follows since momentum is the product of mass 

and velocity.  Mass is a scalar, that is, it has only a magnitude.  A 
vector multiplied by a scalar gives a vector.  

 Acceleration:  this is the rate of change of a velocity.  Since velocity 
is a vector, then so is acceleration. 



 

 Force: from Newton’s law of motion, the action of a force induces an 

acceleration in a body: 
 

force = mass  x  acceleration 
 

 Since acceleration is a vector, so is force. 
 

 

How vectors are represented 

 
We need two pieces of information to represent a vector, namely its 

direction and its magnitude. In the example we have already used, this 
information is conveyed by an arrow.  The length of the arrow represents 

the magnitude of whatever physical quantity is represented by the vector.  
For example, in the journey across the campus the lengths would 

represent metres travelled, but on the weather map the lengths of the 
arrows would represent the wind speeds in metres per second.  The 

length of a vector representing a force would be measured in newtons. 

 
There are several different notation conventions for vectors.  The most 

common are: 
 

 

 PQ  two capital letters with an 

 arrow on top to indicate an arrow 

 starting at point P and  
ending at point Q 

 
 a bold faced letter, such as A 

 
 an underlined letter, such as A  

 or A 
 

 a letters with an arrow above: A

 

 

Note that a vectors may be drawn in any position (like the three versions 
of A in the diagram above) as long as its magnitude and direction is 

preserved. 

 
The magnitude of a vector A is written as |A|.  The quantity |A| is 

therefore a scalar.  Very often the magnitude is written simply as A to 
avoid complicated typography.  
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Adding vectors 

 
 

The point P in the figure is first shifted 
to Q and then shifted to R.   Clearly we 

could also start at the point P and shift 
it directly to R.  The net effect is the 

same.  We can interpret this equivalence 
as a vector addition: 

 

PRQRPQ   

 

 
 

 
Consider two vectors A and B with a common origin as in the sketch (a) 

below.  To add these together we can shift the vector B (without changing 

its magnitude or direction) until its starting point coincides with the end 
point of vector A, as in (b).  The vector sum of A and B is then the vector 

C , which starts at the origin and ends on the end of vector B, as in (c): 
 

 
 

 
 

  
 

  
 

 
  

C   =   A  +  B 

 
 

Notice that the sum of the two vectors can be represented as the diagonal 
of the parallelogram formed from A and B like this: 
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Subtracting vectors 

 
The negative of a vector A is a vector having the same magnitude but the 

opposite direction.  We write it as –A.  Obviously the sum of a vector and 
its negative is zero: 

 
 

 
A + (-A) = 0 

  
 

 
 

 
 

Subtracting  B  is equivalent to adding its negative,  -B: 

 
  

   A – B   =   A + ( - B)   =   C 
 

 
 

 
 

 
 

 
 

 
 

The difference between two vectors may also be constructed by again 

using the parallelogram constructed from A and B, but now the difference 

vector C is the diagonal BA : 
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Components and Projections of a Vector 

 
Consider the vector  A  that shifts the point  P (x1, y1)  to the point  Q (x2, 

y2)  in the figure below.  The displacement from  P  to  Q  corresponds to 
a shift of  (x2 – x1)  along the x axis and a shift of  (y2 – y1)  along the y 

axis.  The shift along the x axis is called the projection of the vector on to 
the x axis, or the x-component of the vector.  Similarly the shift along the 

y axis is called the projection of the vector on to the y axis, or the y-
component of the vector.    

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

The components are usually written as: 
 

Ax  =  x2 –x1   Ay  =  y2 –y1 
 

Suppose the vector A makes an angle  with the x axis, as in the figure 

above.  Then simple trigonometry shows that  

 

  
A

xx 12)cos(
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A
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

 , 

 
where, from the Theorem of Pythagoras, the modulus  A  of the vector A 

is given by: 
 

2
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We can therefore write the components of the vector as: 

 

)cos(AAx    )sin(AAy   
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We can generalise the idea of projection by considering the projection of a 

vector onto an arbitrary direction, for example the projection of a vector A 
onto the direction of a vector B: 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
All we need is the angle  between the two the two vectors, then the 

projection of  A  onto the direction of  B  is 
 

AB   =   A cos().   

 

Similarly we can project the vector B onto the direction of the vector A: 
 

BA  = B cos().   

 

 
Vectors in terms of Unit Vectors 

 
A “unit vector” is defined as having a magnitude of one unit, so it just 

represents a direction.  Unit vectors allow for a simple representation of a 
vector in terms of its components.  In a Cartesian coordinate system  (x, 

y, z), consider unit vectors in the directions of the three coordinate axes   

x, y and z.  There are different notation conventions: these unit vectors 
could, for example, be variously denoted as  

 

i,  j , k    or  zyx ˆ,ˆ,ˆ  or ex , ey , ez 

 

We shall use  i,  j , k  below. 
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From the figure above we can see that the vector A may be written in 

terms of its  x, y, and z  components and the unit vectors as: 
 

A  =  Ax i + Ay j + Az k 
 

Very often, a vector is written in terms of its components using brackets 
like this: 

 
A   =   ( Ax, Ay, Az ) 

 
 

 
Adding and subtracting vectors in terms of their components 

 
To add or subtract two vectors we can simply add or subtract the 

individual components.  For example, if 

 
C =  A + B , 

then 
C =  ( Cx , Cy , Cz ) 

where 
 

 Cx = Ax + Bx ,   Cy = Ay + By ,   Cz = Az + Bz . 
 

 
Similarly, if    C =  A - B , 

 
Then    C =  ( Cx , Cy , Cz ) 

 
where  Cx = Ax - Bx ,  Cy = Ay - By ,  Cz = Az - Bz . 
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A couple of examples will help to make this clear: 

 
(i) Let  A  =  (2, 5, 1)  and  B  =  (3, -7, 4).  Then the sum of these 

vectors is the vector 
 

C =  A + B  =  (5, -2, 5). 
 

(ii) The difference between the same two vectors is the vector 
 

D  = A - B  =  (-1, 12, -3). 
 

 
 

3.2 Forces as Vectors 
 
The resultant of two forces 

 
Forces are vectors.  If a body is subjected to two forces acting in different 

directions, then the net effect is equivalent to a single force equal to the 
vector sum of the two forces.  This equivalent force is often called the 

resultant of the two forces.  The resultant may be found in any of the 
following ways: 

 

(i) The parallelogram of forces 
 

Consider a body acted on by the two forces  FA  and  FB  as in the diagram 
below.  We may find the resultant force FC by constructing the 

parallelogram as shown: 
 

 
 

FC = FA + FB 
 

 
 

 
 

 

 
 

This is a graphical method requiring a ruler and a protractor: first the 
known vectors  FA  and  FB  are drawn, then FC is constructed 

geometrically, then the magnitude and direction of FC can be got by 
measurement. 
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(ii) Using components to find the resultant 
 

Referring to the figure above, suppose we know that that the force  FA  
has components  (FA x , FA y)  and that the force  FB  has components  (FB x 

, FB y).  It follows that the resultant  FC  will have the components  (FC x , 
FC y), where 

 

xBxAxC FFF   and  yByAyC FFF   

 

This is true regardless of what the directions opf the coordinate axes (x  
and y) might be.  

 
(iii) A way of finding the magnitude of the resultant 

 

Suppose that in the diagram above the angle between the force  FA  and 
the resultant  FC  is  , while the angle between the force  FB  and the 

resultant  FC  is  .  We can find the magnitude of the resultant by 

resolving the forces  FA  and  FB  along the direction of  FC:  

 
FC   =   FA cos()  +  FB cos() 

squaring this , 
 

FC
2   =   FA

2 cos2()  +  2FAFB cos()cos()  +  FB
2
 cos2()   

 

We also know that the resultant has a zero component perpendicular to  
FC  (because the resultant is  FC !).  Algebraically, this means that 

 
FA sin()   =   FB sin() 

or 
 

FA sin()  -  FB sin()   =   0 

and squaring this, 

 

FA
2 sin2()  -  2FAFB sin()sin()  +  FB

2
 sin

2()   =   0 

 

Adding this expression to the formula above for FC
2, we get 

 

FC
2   =   FA

2  +  FB
2  +  2FAFB . ( cos()cos()  -  sin()sin() )  

 

using the trigonometrical identity  sin2(θ) + cos2(θ) = 0.  Now, the cosine 
of the sum of two angles is given by the standard trigonometrical formula  

 
cos(+)   =   cos()cos()  -  sin()sin() 

so we find 
 

FC
2   =   FA

2  +  FB
2  +  2FA FB cos(+) 



 

 

This just amounts to an application of the “cosine rule” familiar in 
elementary trigonometry) to a triangle formed by the three forces  FA , FB 

and  FC .   
 

Question 3a 
 

A ship is being towed by two tugs.  The angles made by the two tow-

ropes to the direction of motion of the ship and the magnitude of the 
tensions in the ropes are as shown in the diagram below.  Calculate the 

resultant force acting on the ship. 
 

 
 

 
 

 
 

 
Solution: taking components of the forces in the direction of motion of the 

ship, the magnitude of the resultant force is found to be 
  

F   =   52 cos(30)  +  30 cos(60)     (in kilonewtons) 

 

=   52  x  0.866  +  30  x  0.5   =   45 + 15   =   60 kN.  

 
Notice that we were actually supplied with more information than is 

necessary to answer this question.  We have not used the fact that the 
two forces’ components perpendicular to the direction of motion must 

cancel out.  Can you see that the question could still have been answered 
even if we had been told the magnitude of (say) only one of the forces? 

 
 

3.3 Static Equilibrium 
 
Newton’s second law of motion tells us that a force  F  acting on a body of 

mass  m  will bring about  an acceleration  a  of magnitude  a=F/m.  If a 
body is at rest, or moving with a constant velocity, its acceleration is zero 

and therefore it must have no net force acting on it.  This could be 
because there is no force at all acting on the body, or it may be because 

there are two or more forces acting whose resultant vanishes.  The body 
is then said to be in static equilibrium. 

 
Expressing this algebraically, suppose that there are  N  separate forces 

act on a body at the same point.  If the forces are represented by  F1, F2, 
F3, etc. then the body will be in static equilibrium if their vector sum 

vanishes: 

52kN 

30kN 

Direction 

of motion 30 

60 



 

 

F1 + F2 + F3 + F4 + …..+FN = 0 ,      or   


N

i 1

Fi  = 0 . 

 
 

A polygon of forces 
 

In a situation where a body is in static equilibrium under the influence of  
N  coplanar forces acting at a point, the corresponding vector diagram 

must form a closed N-sided polygon: this condition satisfies the 
requirement that the resultant vanishes.  In the example shown below,   

N = 4, so the four forces acting at a point on the left may be transformed 
into the closed quadrilateral on the right. 

 
 

 

 
 

 
 

 
 

 
 

Note that the angle between the forces inside the polygon of forces is the 
complement of the angle between the vectors acting at the point.  For 

example, in the diagram above the angle between the vectors FA and FB 
acting at P in the diagram above is the obtuse angle , while in the 

quadrilateral on the right the angle between the vectors FA and FB  is the 
acute angle (). 

 
 

A triangle of forces 

 
A number of practical problems involve static equilibrium under three 

coplanar forces acting at a point.  The equilibrium condition is then met if 
the three forces form the sides of a triangle – this is just a special case of 

the polygon of forces discussed above.   
 

An example of the triangle of forces is shown below:  The three forces on 
the left must be in equilibrium since their vector sum forms the closed 

triangle on the right.  Again note that the angles within the triangle are 
the complements of the angles between the forces on the left. 
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Question 3b 
 

Three forces  A, B  and  C  act in the same vertical plane from a point  O.  
Force  A  is  30 N  and acts horizontally to the left of  O. Force  B  is  40 N 

and acts vertically upwards. Determine the value of force C and the 
direction in which it acts, if the forces are in equilibrium. 

 

 
 

 
 

 
 

 
 

 
 

 
Solution:  the triangle of forces on the right is a right-angled triangle, so 

from Pythagoras’ Theorem we have    
  

𝐹𝐶    =     𝐹𝐴
2  +   𝐹𝐵

2   =     (30)2  +   (40)2   =    50 𝑁 

 

The angle  is given by 
30

40
tan  , so that 








 

3

4
tan 1 53.1, so the force 

C is 50 N and acts to the right at an angle of 53.1 below the horizontal. 
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A bit of trigonometry: the sine rule and the cosine rule 

 
The “sine rule” and the “cosine rule” are two very useful equations from 

elementary trigonometry.  They are stated here for reference. 
 

For any triangle with sides A, B, C and corresponding angles a,b,c the 
sine rule states that 

 
 

   

       
)sin()sin()sin( c
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For the same general triangle the cosine rule is: 

 

)cos(2222 aBCCBA   

 
 

 
 

Question 3c 
 

Calculate the force C needed to balance force  A  (which is 30 N at 30 to 

the x axis) and force  B  (which is 50 N at 60 to the x axis). 

 

Solution: first draw a diagram: 
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The angle between  A  and  B  is  30, so in the triangle of forces the 

obtuse angle between  FA  and  FB  is the complement of  30, which is  

150.  We can now use the cosine rule to find FC : 

 

)150cos(503025030)cos(2 22222  cFFFFF BABAC  
 

5998)866.0(30002500900   

 
so 

FC   =   77.45 N. 
 

To find the direction of the force  FC  we can use the sine rule: take the 
angle in the triangle of forces between  FA  and   FC  to be   , then 

 

)150sin()sin(

CB FF

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so that 
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It follows that   =  18.83, so that  FC  is directed in the negative x 

direction at an angle    =  18.83  +  30  =  48.83 below the axis. 

 

 
 

Alternatively, we can solve the same problem by resolving the forces: 
 

   
 

      Resolving horizontally: 
       

      60cos30coscos BAC FFF    

         98.505.050866.030  N 

 

      Resolving vertically: 
 

      60sin30sinsin BAC FFF   

         3.58866.0505.030  N 
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By Pythagoras’ Theorem we then have 

 

𝐹𝐶
2   =     𝐹𝑐 sin 𝜃 2   +     𝐹𝐶 cos 𝜃 2   =     58.30 2   +     50.98 2  =    5998 𝑁2 

 
so that FC =77.45 N.   

 

To find the direction of FC we take the ratio of the two components: 
 

1436.1
98.50
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This gives 
 

𝜃  =    tan−1(1.1436)   =    48.8°    
 
 

 
Some particular examples of static equilibrium: 

 
 

(i) Weight and Normal Reaction Force 
 

Consider a block of mass  M  at rest 

on a surface.  The block is in static 
equilibrium under the influence of two 

equal and opposite forces, namely, (a) 
the weight  W = Mg,  due to the force 

of gravity acting on the mass  M,  and 
(b) the normal reaction force  N  due 

to the surface pushing back on the 
block. 

 
The reaction force arises from the slight deformation of the surface due to 

the weight of the block. The net force must be zero since the block is in 
equilibrium, so that  

 
    N  =  W, 

 

so the magnitude of the normal reaction force is  N  =  Mg.   
 

In general, when a body is pressed against a surface, the surface pushes 
back on the body with a reaction force that is perpendicular (normal) to 

the surface. 
  

N 

W 



 

(ii) Frictional forces 

 
Suppose the block is subjected to a small 

sideways force  F.  If the contact between 
the block and the surface is rough, there will 

be a frictional force  f  opposing the 
tendency of the block to slide across the 

surface.  As long as the block is stationary, 
it must be in equilibrium, so the frictional 

force must exactly balance the applied 
force:   F   =   f .  As the applied force is increased, eventually there will 

come a point where the block begins to move, since there is a limit to the 
magnitude of the frictional force.  If the friction is negligible the contact 

between the block and the surface is said to be smooth or frictionless. 
 

 

(iii) Tension in a rope, cord or cable 
 

A force may be applied to a body by 
attaching a cord to it and pulling on 

the other end of the cord.  The tension 
force  T   in the cord is transmittted 

along its length, so that while the 
body is pulled with a force  T  in the 

direction of the cord, the person 
pulling on the cord feels an equal and 

 opposite force  -T  towards the body. In most situations we may ignore 
the mass of the cord and it may assumed to be unstretchable.  

 
Some similar situations are illustrated below: 
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Question 3d 
 
 

 
A block of mass  M  =  15 kg  hangs from 

a cord attached by a knot to two other 
cords which are in turn fixed to the ceiling 

as shown in the sketch. 

 
The cords have negligible mass. What are the  

tensions in the three cords? 
 

Solution: firstly, since the block is in static 
equilibrium, the net force on the block is zero, 

so that  T3  =  W,  i.e. T3  =  Mg  =  15  9.8 N 

=  147 N. 

 
Next, the knot is in equilibrium, so that the three 

tensions must add vectorially to zero:  
 

  T1  +  T2  +  T3   =   0 
 

Firstly we resolve the forces horizontally:  T1x + T2x + T3x = 0.  Using the 
data from above this yields 

 

−𝑇1 cos 28°   +   𝑇2 cos 47°   +    0   =     0 
.  (i) 

 
Now resolving vertically,  T1y + T2y + T3y  =  0, whence 

 

𝑇1 sin 28°   +   𝑇2 sin 47°   −   𝑇3    =     0 
     (ii) 

 
We now have two simultaneous equations (i) and (ii) to determine the 

two unknowns  T1  and  T2.  From (i) we can express  T1  in terms of  T2: 
 

𝑇1   =    𝑇2  
cos 47° 

sin 28° 
  =    0.7724 𝑇2 

 

Substituting this value into (ii) along with  T3 = 147 N, we have: 
 

0.7724 𝑇2  sin 28°  +  𝑇2 sin 47°  −   147  =    0   
 
This becomes: 

 

𝑇2  0.7724 ×   0.4695 +   0.7314   =    147 

T3 

M 

W=Mg 

T1 T2 

47 28 



 

so that 

NT 4.134
094.1

147
2   

and 
  

NTT 8.1037724.0 21   

 
The tensions in the cords are therefore  T1  =  103.8 N,  T2 = 134.4 N and  

T3  =  147 N.   
 

 

Question 3e 
 
A crate of mass 15kg is held stationary on an 
smooth ramp, inclined at 27, by a rope parallel 

to the plane of the ramp, as in the figure.   

 
 

 
 

 
 

 
Calculate the values of the tension in the rope and the normal reaction 

force on the block.  
 

Solution: we are told that the ramp is smooth, so we can ignore friction.  
The three forces under which the crate is in equilibrium are gravity acting 

on the mass, to give the weight  W,  the tension in the rope T and the 
normal reaction force N of the ramp on the crate, as shown in the sketch:   
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Since T and N are respectively parallel and perpendicular to the slope of 

the ramp, it makes sense to resolve the forces along these directions. In 
the lower sketch we have resolved the weight into its two components, 

namely  W.sin()  parallel the slope and  W.cos()  perpendicular to the 

ramp. 

 
It is clear, then, that for static equilibrium the normal reaction force is  

 

NMgWN 131)27cos(8.915coscos    

 

and the tension in the rope is  
 

NMgWT 7.66)27sin(8.915sinsin    

 

 
 

3.4 The moment of a force (torque) 
 

So far we have considered static equilibrium under a number of forces 
acting at the same point on a body.  What happens if the forces do not 

act at a point?  Consider, for example, the two discs below : 
 

 

 
 

 
 

 
 

 
 

The disc on the left is in static equilibrium under two equal and opposite 
forces  F  and   -F  acting through a point (the centre of the disc).  The 

disc on the right is not in static equilibrium, since in that case the two 
forces do not act through the same point and the disc will therefore rotate 

under the action of the forces.  A pair of forces separated by a 
perpendicular distance  d  are sometimes called a couple.  The magnitude 

of the torque, , can be defined as the product of the force  F  and the 

perpendicular distance  d: 
 

 

Fd  

 

 
 

 

F -F 

F 

-F 



 

     

 
Such a torque will lead to rotation  

about the midpoint O. 
 

 
 

 
The torque due to any force around any point is the product of the force 

and the perpendicular distance from the point to the line of action of the 
force.  Note that, instead of just multiplying the value of each force by the 

distance between them: 
 

Fd  

 
it is slightly more correct to regard each force,  F  and  -F.  as 

contributing half the torque, writing 
 

 Fd
d

F
d

Fforcesofmoment
22

. 

 

Here,  d/2  is obviously the perpendicular distance from the central axis to 
the line of action of either force. 

 
 

Conditions for the static equilibrium of a body: 
 

For static equilibrium we have to impose the condition that the sum of all 
the external torques acting on the body must be zero.  So we have: 

 
 

1. The vector sum of all the external forces acting on the body must 
be zero. 

2. The sum of all the external torques acting on the body must be 

zero, measured about any point. 

 

 
The first of these conditions prevents any linear motion of the body, and 

the second prevents any rotational motion of the body. 
 

 
 

 
 

 
 

F 

-F 

d 



 

Question 3f 

 
 

The ends of a uniform  
beam of mass  m = 1.8 kg 

are supported on two 
scales.  A block of mass 

M = 2.7 kg  rests on  
the beam with its centre 

one-quarter of the way along the beam from the left-hand end, as shown 
in the diagram.  What are the readings on the two scales? 

 
Solution:  the sketch below gives a summary of the forces acting on the 

beam.  There are no horizontal components to worry about.  The vertical 
components must balance if the beam is  in static equilibrium: 
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      (i) 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

There are two unknowns,  F1  and  F2,  so we must use the second 
stability criterion to solve the problem: we take moments of the forces 

about the left hand end of the beam.  Since  F1  passes through this point 
it will make no contribution to the moments.  The clockwise moments will 

add up to: 
 

)2/)(()4/)(( LmgLMg   

 
while just one force provides an anticlockwise moment which is  

 

))(( 2 LF  . 

 

scale scale 

F2 

mg 

Mg 

F1 

L 

L / 2 

 L /4 



 

Equating the clockwise and anticlockwise moments we get 

 

)2/)(()4/)((2 LmgLMgLF   

   (ii) 

 
(Strictly speaking, the clockwise moment should be regarded as having a 

negative sign and what we are doing is setting the total moment equal to 
zero.) 

 
It follows that 

 

NmgMgF 44.158.9)2/8.14/7.2()2/()4/(2  . 

 

We now substitute this value into eq. (i) above: 
 

NFmgMgF 67.2844.158.9)8.17.2(21  . 

 
Actually we could have taken moments about any point along the beam.  

Whichever point was chosen, the same answers would have been arrived 

at.  By selecting one end we have kept the algebra as simple as possible. 
 

 
 

Question 3g 
 

A safe of mass  430 kg  hangs by a rope 

from a hinged strut.  The strut is 
maintained at an angle    to the horizontal 

by a cable attached to the wall,  
vertically above the hinge, as shown in 

the diagram. 
 

The mass of the strut is  85 kg  and the 
dimensions are  a = 1.9 m  and  b = 2.5 m. 

The mass of the cable and rope are 
negligible. 

 
Calculate (i) the tension in the 

cable and (ii) the reaction force at the hinge. 
 

 
 

 

 
 

  

 

M 

cable 

strut 

rope 

hinge 

a 

b 

T 



 

Solution: the forces acting are shown in the sketch below.   

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
The reaction force at the hinge is taken to have a horizontal component  

FH  and a vertical component  FV.  In order to calculate the tension in the 
cable we can take moments of the forces about the hinge. In this case we 

don’t have to bother about the reaction force since it passes through the 
hinge and so makes zero contribution to the moments. 

 
The clockwise moments due to the weight of the beam and the weight of 

the safe are:  
 

)()2/()()2/( bgMmbWbw   

 
 

The anticlockwise moment due to the tension in the cable is aT  . 

Equating the clockwise and anticlockwise moments gives 
 

NgabMmT 8.60928.9)9.1/5.2()4702/85()/()2/(   

 

 
Now, to find the reaction forces at the hinge we resolve the forces 

horizontally and vertically.  Horizontally: 
 

NTFH 8.6092  

 
Vertically: 

NgmMwWFV 50478.9)85430()(   

 
 

 

 b 

a 

FH 

FV W = Mg 

w = mg 

T 



 

 

Using Pythagoras' Theorem, the magnitude of the resultant reaction force 
is found to be 

  6093 2   +     5047 2    =     7812 𝑁 
 

and the force is directed at an angle  
 

6.39)8.6092/5047(tan)/(tan 11  

HV FF   
 

to the horizontal. 

 
 

Question 3h 
 
A ladder is resting against a wall as shown with its upper end against a 

smooth wall and its lower end supported on rough ground. The ladder has 
a mass of  20 kg  and its weight may assume to act through a point  2 m 

from the lower end. Determine the reaction forces of the wall and the 
ground on the ladder.  

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
Solution: the forces are sketched in the diagram on the right, where we 

have resolved the reaction force at the ground into a horizontal 

component  FH  and a vertical component  FV.  We are told in the problem 
that the wall is smooth: this means there is no friction, so the reaction 

force at the wall  N  must be perpendicular to the wall.   
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The first step is to find the value of  N.  To do this we can take moments 

of the forces about the point of contact of the ladder with the ground.  
This eliminates the reaction forces at the ground.  Taking the ladder to be 

of length  L,  the clockwise moment is due to the reaction force  N : this 
has magnitude  ))60sin(()( LN  .  Here )60sin(L   is the perpendicular 

distance between the point of contact with the ground and the line of 

action of the normal reaction force N.   
 

The anticlockwise moment is due to the weight of the ladder: this has a 
magnitude  )60cos()5/2()(  LMg .  Again  )60cos()5/2( L  is the 

perpendicular distance between the point of contact with the ground and 
the line of action of the weight  W. 

 
Equating the clockwise and anticlockwise moments of the forces gives: 

 

)60cos()5/2()())60sin(()(  LMgLN  

It follows that: 

 

NMgN 27.45
866.05

5.02
8.920

)60sin(5

)60cos(2





  

 

Now, to work out the components of the reaction force at the ground, we 

resolve the forces horizontally and vertically. Resolving horizontally gives:

NNFH 27.45 , while resolving vertically gives 

 

NMgFV 1968.920   

 
The resultant reaction force is therefore 

 

𝐹   =      𝐹𝐻
2  +   𝐹𝑉

2    =       45.27 2 +   196 2    =     201 𝑁 

 

at an angle 
 

77)27.45/196(tan)/(tan 11  

HV FF     
 

to the horizontal. 

 
  



 

3.5 Friction 
 
Static equilibrium and all motion are strongly affected by friction between 

surfaces.  The concept of “smooth”, i.e. frictionless, surfaces is an 
idealisation, useful as an approximation when solving problems, but not 

achievable in practice.  Friction is, of course, essential for many aspects of 
everyday life, since it provides traction when we walk or drive a car or 

bicycle along the road.  It would be impossible to erect a ladder against a 

wall without friction between the ladder and the ground.   
 

Friction between relatively smooth surfaces arises from adhesion at a 
microscopic scale.  The actual microscopic area of contact between two 

surfaces is limited to the “peaks” which might constitute perhaps only 10-4 
of the apparent contact area.  This means that the local pressures at 

these contact points are 104 times greater than the nominal load per unit 
area.  Such pressures can cause “cold welding” at the contact points.  To 

produce relative motion between the two surfaces this adhesion has to be 
overcome: the force required is what we experience as frictional force. 

 
If two surfaces are pressed harder together, many more contact points 

cold-weld, so it requires a greater applied force to get the surfaces to 
slide relative to each other.  This means that the static frictional forces 

increase as the load on the surfaces is increased. 

 
Consider applying a sideways force  F  

to a block lying on a surface.   For a 
small force the block will remain in 

static equilibrium, since the static 
frictional force  fS  exactly balances 

the applied force.   As the applied  
force is increased the magnitude of 

the static frictional force also increases 
so that the block remains at rest. 

Eventually the applied forceovercomes the adhesion between the surfaces 
and the block breaks away and accelerates in the direction of the applied 

force. The frictional force that opposes the motion of the moving block is 
called the kinetic frictional force.  The magnitude of the kinetic friction is 

lower than the maximum value of the static friction, but still increases 

with the load.  Kinetic friction leads to “jerky” motion, since it results from 
the momentary forming and breaking of adhesive cold-welds between the 

surfaces.  We are often made aware of the jerkiness through the sound 
produced, for example the squeak of a finger-nail scratching a 

blackboard, or the sound of a violin, produced by drawing the bow across 
the strings.   

  

N 

W 

F 

fS 



 

Properties of friction   

 
There are a number of empirical rules relating to friction: 

 
(i) If a body is in static equilibrium under the application of a force, 

then the static friction  fS  exactly balances the component of the 
applied force that is parallel to the surface.  The limiting value of 

the static frictional force  fS,max  is proportional to the magnitude 
of the normal reaction force on the body from the surface, i.e. 

 

Nf SS max,  

  

 where  S  is called the coefficient of static friction.   

 

(ii) If the body begins to slide along the surface, the magnitude of 

the frictional force drops below  fS,max  to a lower value (the 
"kinetic" frictional force)  fK  which is also proportional to the 

magnitude of the normal reaction force: 
 

Nf KK  , 

  
 where K is called the coefficient of kinetic friction. 

 
(iii) The frictional force is independent of the area of contact. 

 
 

 
Limiting friction on a horizontal plane 

 
Consider a heavy block of mass  M 

at rest on a horizontal surface. 
Suppose a force  F  is applied at an 

angle    to the horizontal.  The force 

increases in magnitude until the 
block is just on the point of moving. 

At this point we know that the static 

frictional force has a magnitude Nf SS max, . 

 

First we resolve the forces in the problem horizontally: 
 

NfF SS   max,)cos( . (i) 

 
Then vertically: 

    MgWNF )sin(   (ii) 

 

N 

W 

F 

fS 

 



 

 

From (ii) we have 

)sin(FMgN  . 

 

Substituting for N in (i) we find# 
 

𝐹 cos 𝜃   =    𝜇𝑆   𝑀𝑔 −   𝐹 sin 𝜃  
 
Rearranging, we find that the minimum force required to move the block 

is 
 

𝐹   =     
𝜇𝑆𝑀𝑔

 cos 𝜃   +    𝜇𝑆 sin 𝜃 
 

 
 

 
 

Question 3i 
 
A metal block of mass 100 kg is to be dragged across a rough floor using 

a rope inclined at 30.  If the coefficient of static friction is 0.75, what is 

the smallest force required to move the block? 

 
Solution: using the result above, 

 

𝐹  =    
𝜇𝑆𝑀𝑔

 cos𝜃  +  𝜇𝑆 sin 𝜃 
  =    

0.75 × 100 × 9.8

 cos 30°  +   0.75 sin 30° 
  =    593 𝑁 

 

 
 

 
Optimal angle: the "angle of friction" 

 
Clearly we have a choice of the angle at which to apply the external force.  

If we pull at an angle    to the horizontal, the net normal force is reduced 

by the vertical component of the external force.  This reduces the limiting 

static friction, and hence the magnitude of the smallest force required to 
move the block.   However if the angle is too steep, the horizontal 

component of the external force will not be sufficient to overcome the 
friction.  Given the weight of the block and the coefficient of friction, can 

we calculate the optimal angle at which to apply the force in order to 
move the block with least effort? 

  



 

 

 
From the previous result the minimum value of the external force will 

occur when the quantity  )sin(cos  S
 
is at a maximum.  A little bit of 

mathematics shows that this condition is met when 

 

)(tan 1

S   

 

The construction below shows that the resultant  R  of the normal reaction 
force N and the frictional force  fS  makes an angle of 

 

)(tan)/(tan 1

max,

1

SS Nf   
 

 

to the normal, so that the optimal angle for the external force is at right 
angles to R. 

 
 

 
 

 

 
 

 
 

 

This construction defines the angle of friction, )(tan 1

S  . 

 

 
 

 
 

 
 

 

Using the resultant  R  and the angle of friction we can reduce the 
problem to a triangle of forces, as shown in the following diagram. 
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Question 3j 
 
A metal block of mass  100 kg  is to be dragged across a rough floor 

using a rope, as in question 3g, but this time we can choose the 
inclination of the rope.  If the coefficient of static friction is 0.75, what is 

the smallest force required to move the block? 
 

Solution: from the construction, and remembering that  F  and  R  are at 

right angles to each other we can use the triangle of forces to find F 
directly: sinWF  .  But the angle of friction 

 

𝜆   =     tan−1 𝜇𝑆    =     tan−1 0.75    =     37° 
so  

 

NMgF 588)9.36sin(8.9100sinmin    

 

This value is indeed smaller than the force calculated earlier. 
 

 
 

Limiting friction on an inclined plane 

 
Consider a block of mass M resting on a plane, 

inclined at angle  to the horizontal.  The coefficient 

of friction is S .  Suppose that the angle of the plane 

is increased: at what angle will the block begin to 
slide down the plane? 

 
 

 
 

Initially the block is in equilibrium under the 
action of the weight, W , the normal reaction force,  

N, and the frictional force fS.  As the plane tilts further the component of 
the weight parallel to the plane will increase until the frictional force 

reaches its limiting value fS,max.  Let us resolve the forces parallel and 
perpendicular to the slope. 

 

Resolving perpendicular to the plane: 
 

    NW cos    (i) 

 

Resolving parallel to the plane: 
 

    NfW SS   max,sin  (ii) 

 

W 

N 

fS 

 

 



 

Using (i) we can eliminate the normal reaction force N.  Then (ii) becomes 

 

     cossin max, WfW SS   

 

so that the limiting angle is determined by 
 

    S
W

W





 tan

cos

sin
 

 

i.e. )(tan 1

S  .  This is identical to the angle of friction .   

 

This result gives a very simple way of determining the coefficient of 
friction between a body and a surface: just tilt the surface until the body 

is on the verge of slipping, then the tangent of the slope gives a value for 
the coefficient of friction. 
  

 
Question 3k 
 

A metal block of mass 100kg rests on a plane surface inclined at 20 to 

the horizontal.  The coefficient of friction is 0.75.  A force is applied to the 

block with a rope parallel to the slope of the plane.  What is the smallest 

force required to move the block (a) up the plane, 
and (b) down the plane? 

 
 

 
 

 
 

 
 

Solution:  
 

(a) We resolve the forces parallel and perpendicularly to the plane.   
Resolving perpendicularly, 

 

     cosWN   (i) 

 

Resolving parallel to the plane: 
 

   NMgfWF SS   sinsin max,  (ii) 

 
Substituting the value of N from (i) gives 

 
)cos(sincossinsin  SSS MgWWNWF   

W 

N 

fS 

 

F 

 



 

 

=     100  ×   9.8  ×   0.342 +   0.75 × 0.9397    =     1026 𝑁  
 

(b) In the second case the force F is directed down the slope and the 
frictional force acts up the slope, to oppose the motion.  Resolving the 

forces perpendicular to the slope gives the same equation (i) as before.  
Resolving parallel to the slope gives: 

 

 cossin WNWF SS  . 

Rearranging gives  

 

N

MgWWF SS

5.355)342.09397.075.0(8.9100

)sincos(sincos



 
 

 

 

Question 3l 
 

A uniform ladder, of length L, rests against a smooth wall at an inclination 
 to the floor.  The coefficient of friction between the ladder and the floor 

is S.  Show that the shallowest angle at which the ladder is stable is 

given by the equation 

 

   









 

S


2

1
tan 1 . 

 

Solution:  the forces in the problem are as 
shown in the sketch.  We have labelled the 

reaction force at the wall P.  Since the wall 
is smooth, i.e. frictionless, this reaction force 

is normal to the wall.  The reaction force at 
the floor has been resolved into a normal 

component N and the frictional force fS. 
The shallowest angle for stability of the 

ladder will be determined by the maximum 

value that the frictional force can take, 
namely fS,max, which of course is determined by the coefficient of friction 

and the normal reaction force N.   
 

First calculate P by taking moments of the forces about the point of 
contact with the floor:  this takes both fS and N out of the equation. 

 
Clockwise moment )sin()( LP   

 

Anticlockwise moment cos)2/()(  LW  

 

W 
 fS 

N 

P 



 

Equating these we find  

 





tan2sin2

cos mg

L

L
WP    (i) 

 
Now resolving the forces horizontally: 

 

SfP  ,  (ii) 

 

and resolving vertically: 
 

mgWN  .  (iii) 

 

The limiting case is when Nff SSS  max, .  It follows from (iii) that: 

 

mgNf SSS  max, , 

and from (i) and (ii) 

    



tan2

max,

mg
mgfP SS  . 

 
This yields the required result, namely that the smallest angle for stability 

of the ladder is given by 

S


2

1
tan   

so 

 











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S


2

1
tan 1 . 

 

Note that for vanishingly small coefficient of friction, 0S , the only 

stable position for the ladder is  𝜃 =  tan−1 ∞ =
𝜋

2
  , so the ladder stands 

vertically against the wall! 
  



 

Question 3m 
 
A firefighter has to climb to the 

top of the ladder in example 3.13. 
Suppose the ladder is of mass m 

and the firefighter is of mass M. 
Show that the shallowest angle for 

stability of the ladder is given by 

the equation 
 

 

 













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)/1(

2/1
tan 1

Mm

Mm

S
 . 

 

 
 

Solution: the new feature here is the weight of the firefighter W at the top 
of the ladder, while the weight of the ladder w acts half-way along. 

 
Resolving horizontally we have the same equation as before: 

 

SfP    (i) 

 

Resolving vertically we have 
 

gmMwWN )(   (ii) 

 
Taking moments about the pint of contact with the floor, we find 

 
)2/(coscos)2/()()cos()()sin()( mMLgLwLWLP    

 

This gives  

tan

)2/( gmM
P


 .  (iii) 

    

It follows that in the limiting case the shallowest angle of the ladder will 
be when  

Nff SSS  max,  

 

Now, substituting for N from (ii) above we get 
 

gmMNf SSS )(max,    . 

 
We now use (i) and equate fS,max to the value of P found in (iii): 

 

W 

 fS 

N 

P 

w 



 

   



tan

)2/(
)(max,

gmM
gmMf SS


 . 

 
This gives the required result: 

 

)(

2/
tan

mM

mM

S 





 , 

 
dividing top and bottom by M gives 

 













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)/1(

2/1
tan 1

Mm

Mm

S
 . 

 

Let’s put some numbers in.  Suppose the firefighter plus equipment has a 
mass of 80kg, the ladder has a mass of 40kg and the coefficient of friction 

is 0.75.  Then 
 

48
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