
 

 

Section 6:  Collisions 
 

 
For an isolated system, the total linear momentum is a conserved 

quantity.  If two bodies of mass  m1  and  m2  interact only with each 
other then  

 

𝑚1𝑣1   +    𝑚2𝑣2   =    𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
 
This principle might seem to have rather limited usefulness, since it is not 

very often that we deal with isolated systems of particles.  For example in 
a car crash, both cars are in contact with the road and probably at least 

one driver will have applied the brakes.  Both cars are therefore subject 

to frictional forces with the road, and so the “system” (comprising the two 
cars) is not strictly isolated.  However the impulse involved when two cars 

collide involves a large force acting for a very short time.  In such a short 
time the change in momentum of the cars due to the external frictional 

forces will be negligible, compared to the change in momentum due to 
the impulse of the collision.  It follows that we can usually make use of 

the principle of conservation of linear momentum even when the system 
is not isolated. 

 
 

Question 6a  
 
A car P of mass  1200 kg  travels along a level road at a speed of 

8 m s-1.  The driver notices that car Q ahead has stopped and 
immediately applies the brakes, causing the wheels to lock.  The car P 

slides a distance of  10  metres before it hits car Q at a speed of 
2 m s-1.  Car Q has a mass of  800kg.  Immediately after impact car P 

moves with a speed of  1  m s-1.  Suppose the collision has a duration of 
0.1  seconds: analyse what happens in the collision as far as possible.  

 
Solution: 

 

(i) First consider the braking of car P.  The deceleration can be found 
from: 

 

asuv 222   

 

and with u = 8 m s-1, v = 2 m s-1 and s = 10 m, we get 
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The braking force required to produce this deceleration is  

 

JmaFbrake 360031200   

 

The loss of kinetic energy of car P in the braking process is 
 

𝛥 𝐾𝐸  =  ½ 𝑚𝑣2 −  ½ 𝑚𝑢2  =   𝐹𝑏𝑟𝑎𝑘𝑒 𝑠 =  −1200 × 3 × 10  =  −36  𝑘𝐽 
 

 
(ii) Now suppose we can apply the conservation of linear momentum to 

the collision.  Let car P have velocities  vPi  =  2 m s-1  and  vPf  =  1 m s-1 
before and after the collision, and likewise the velocities of car Q are 

vQi = 0  and  vQf.  The conservation of momentum gives 
 

QfQPfPPiP vmvmvm  0  

Then 
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The loss of kinetic energy in the collision is  
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Notice that the loss of KE in the collision is much less then the loss of KE 
in the braking process: most of P’s KE has been dissipated before the 

collision. 
 

(iii) Now we work out the impulse from the change in the momentum 
during the collision:  let the impulse be  J, then the impulse on P due to 

collision with Q,  JPQ  is equal and opposite to  JQP  the impulse on Q due to 
collision with P: 

 

NsvmvmJ QfQQQQP 12005.1800)(  . 

 

The average force on Q in the collision is the impulse divided by  the 
time: 

 

NtJF QPcollis 120001.0/1200/  . 

 



 

 

The force involved in the collision is therefore much greater than the force 

involved in braking. 
 

(iv) The change in momentum due to the external forces (braking force) 
during the collision is only  

 

NstFp brake
brake
P 3601.03600  , 

 

while the change in momentum due to the interaction between the cars 
during the collision is  

 

NsJp PQ
collis
P 1200  

 

The effect of the external forces is therefore only 3% of the total effect. 
 

 
Although this is an artificial problem, it illustrates the essential point, 

which is that a collision between two bodies results in a large force acting 

for a short time.  In such a short time there is a negligible effect on the 
momentum due to external forces. 

 
Hence, we can generally use the principle of conservation of momentum, 

whether there are external forces or not: 
 

collisionabeforemomentumlinearTotalcollisionaaftermomentumlinearTotal 

 

We must remember that momentum is a vector quantity, so that both the 
magnitude and direction of the final momentum must equal the 

magnitude and direction of the initial momentum.  
  

 

6.1 Centres of mass 
 

Consider a system consisting of two 
masses m1 and m2.  Let the positions 

of the masses be x1 and x2.  The 
centre of mass is at the point C, 

whose position is x0, along the line of 
centres of the masses.  To determine 

 the position of the centre of mass we take moments of the masses about 
C: 

)()( 022101 xxmxxm   

Rearranging we find 

1122210 )( xmxmmmx   
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From the way we have worked out the position of C, it is clear that if the 
masses were attached to a light bar and pivoted at C, then the weights of 

the two masses would balance.  We can generalise this treatment to 

define the position r 0 of the centre of mass in three dimensions in terms 
of the position vectors r 1 and r 2:  

 

𝑟0   =    
𝑚1𝑟1  +   𝑚2𝑟2

𝑚1   +    𝑚2
 

 

We now differentiate with respect to time: 
 

𝑑𝑟0

𝑑𝑡
  =    

𝑚1𝑣1   +    𝑚2𝑣2

𝑚1   + 𝑚2
 

 
The numerator on the right hand side is just the total momentum of the 

system.  It follows that if the total momentum is conserved, then the 
centre of mass moves with a constant velocity. 

 
 

6.2 Elastic and inelastic collisions 
 
An elastic collision is one in which the total kinetic energy of the bodies 

after the collision is the same as it was before the collision.  An example 
would be two snooker balls colliding: snooker balls are made of a hard 

material that does not deform easily, so that energy is not dissipated in a 
collision. 

   
We saw in the collision between the two cars earlier that there was a 

considerable loss of kinetic energy in the collision.  The energy that 
disappeared went into deformation of the panel-work, generating heat, 

sound, and so on.  Such a collision, in which the kinetic energy is not 

conserved, is called an inelastic collision.  The fraction of kinetic energy 
lost in an inelastic collision depends on the circumstances.  However an 

extreme example, known as a completely inelastic collision, is the case 
where the two bodies stick together and move with a common velocity 

after the collision. 
 

 
 

 
 

 



 

 

Elastic collision in one dimension 

 
Consider two objects with 

masses  m1  and  m2  moving 
along the same straight line. 

 
Let their velocities before and 

after they collide be  u1, u2   
and  v1, v2  respectively. 

 
Conservation of momentum 

yields: 
 

22112211 vmvmumum     

     (i) 
 

For an elastic collision we can 
equate the kinetic energies before and after the collision: 
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(ii) 
Rearranging (i) gives 

)()( 222111 vumvum 
 

(iii) 
 

From (ii) we get 
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(iv) 

 

Using the identity ))((22 bababa  , equation (iv) becomes: 

 

   ))(())(( 2222211111 vuvumvuvum  . 

 
We now divide this equation by equation (iii).  This gives: 

 

)()( 2211 vuvu   

or equivalently 

)()( 2121 uuvv   

   (v) 
 

This shows that the relative velocity after an elastic collision is the 
negative of the relative velocity before the collision.  This equation may 

m1 m2 

u1 u2 

Before 

m1 m2 

v1 v2 

After 



 

 

be combined with the momentum equation, (i) or (iii), to find  v1  and  v2 

separately: first, from (v) we write  v2  as: 
 

1212 )( vuuv   

 
 then substituting into (i) gives 
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Let’s look at some special cases: 
 

 
(a) Equal masses, m1 = m 2 = m 

 

In this case  21 uv    and  12 uv  : the kinetic energies of the masses 

are interchanged in the collision. 

 
 

(b) Collision with a stationary ball 
 

In the general case where  21 mm  , but  u2 = 0, we find 
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In the case of equal masses, e.g. if a snooker ball with velocity  u1 

strikes a stationary snooker ball along the line of centres, the first ball 
stops dead (v1 = 0) and the second ball moves off with velocity  v2 = 

u1.  All the kinetic energy is transferred to the second ball. 
 

(c) Very heavy “target”, i.e. m 2 >> m 1 

 

In this case we can ignore m1 compared to m2.  The equations  
become 

 

 121 2 uuv    and       22 uv   

 



 

 

This shows that the velocity of the “target” is unaffected by collision 

with the light projectile, but the projectile has a large change in 
velocity.  Consider a particular case of a gas molecule hitting the wall 

of its container.  If the wall is stationary (u2 = 0), the molecule 
bounces straight off with the same speed, but in the opposite 

direction:  11 uv  .  Suppose the wall is now moving towards the 

approaching molecule with velocity  uu 2 .  The velocity of recoil of 

the molecule is now  11 2 uuv  , i.e. it picks up twice the velocity of 

the wall, and gains kinetic energy in the process.  This is why a gas 
heats up if it is compressed adiabatically. 

 
 

(d) Very heavy “projectile”, i.e. m 1 >> m 2 

 
This is just the inverse of (c), when we can ignore  m2  compared to 

m1.  The equations are: 
 

 11 uv       and     212 2 uuv   

 
Suppose we fire a cannon ball at a stationary golf ball (u2 = 0).  Then  

the first equation tells us that the velocity of the cannon ball is 
unaffected by the collision, but the golf ball picks up twice the velocity 

of the cannon ball!  Where does the factor of two come from?  Well 
remember that in an elastic collision the relative velocity after a 

collision is minus the relative velocity before the collision.  In the 

present case the relative velocity before the collision is 121 uuu  .  

After the collision the relative velocity is  2121 vuvv  , which equals 

1u , i.e. the negative of the initial relative velocity.  

 

 
Question 6b 
 
Two bodies of mass  m  and  1.5 m  move along the same line and 

undergo an elastic collision.  The initial velocities are  1 m s-1  
and  –0.3 m s-1.  Calculate the final velocities of the bodies.  

 
Solution:  the momentum equation becomes: 

 

mmmmmmvmv 55.045.0)3.0(5.115.1 21   

 

so that 

55.05.1 21  vv  

(i) 

 



 

 

The relative velocity equation gives 

 

3.1))3.0(1()( 2121  uuvv  

 (ii) 

 
Subtracting (ii) from (i) gives 

 

85.15.2 2 v  ,  so 
1

2 74.0  smv , 

and then  
1

21 56.03.174.03.1  smvv  

 

 
Completely inelastic collisions in one dimension 

 
In a completely inelastic collision 

the two colliding bodies stick 
together after the collision and 

move with a common velocity  v 
as shown in the diagram.  

 
In this case, conservation of 

momentum gives 
 

vmmumum )( 212211    

 
The final velocity is therefore 
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The kinetic energy lost in the collision is 
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Substituting the value of the common velocity v leads to the result: 
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Question 6c 
 
In the days before high-speed 

timing devices, the speed of a 
bullet was measured using a 

ballistic pendulum, sketched 
opposite.  The bullet of mass  m 

is fired into a wooden block, 

of mass  M, which is supported on 
two long cords so that it can swing 

upwards. The maximum height,  h, 
reached by the block is measured.  

This allows the initial velocity  u 
of the bullet to be estimated. 

 
Suppose that  m = 9.5 g  and  

M = 5.4 kg  and that the height 
reached is  h = 6.3 cm. 

 
Solution: conservation of momentum gives: 

 

vmMmu )( 
 

(i) 
 

The kinetic energy of the system  (block + bullet) is converted entirely 
into potential energy when the height is increased to h.  It follows that 

 

ghmMvmM )()( 2

2
1  , 

 

from which we find 

ghv 2  

 

Inserting this result into (i) gives 
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How much of the original kinetic energy survives the collision?  The initial 

kinetic energy is .901.17.6320095.0 2

2
12

2
1 kJmu   The kinetic energy 

immediately after the bullet hits the block is equal to the gravitational 
potential energy acquired by the block and bullet when they have swung 

up to their ultimate height  6.3 cm.  This is  
 

.3.3063.08.94095.5)( JghmM   

u 
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This is only 0.175% of the initial kinetic energy.  The rest goes into 

deformation of the block, the generation of heat, and so on. 
 

 
Collisions in two or three dimensions 

 
In this case we have to write the conservation of momentum as a vector 

equation: 

𝑚1𝑢1   +    𝑚2𝑢2   =    𝑚1𝑣1   +    𝑚2𝑣2 
 

Obviously we can resolve this equation into two or three components, but 

sometimes it is easier to use the vectors directly.   
 

Question 6d 
 
Two skaters Alf and Bettie collide and embrace, causing a completely 

inelastic collision.  Alf, whose mass is  83 kg, was initially skating due east 
at  6.2 km/hr.  Bettie’s mass is 55 kg.  She was initially skating due north 

at  7.8 km/hr.  What is the velocity of the pair after the collision? 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

Solution:  conservation of momentum gives: 
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   (i) 

We may first take the  x  components of the momentum equation: 

 

cos)()0( vmmmum BABAA 
 

  (ii) 
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Taking the  y  components gives: 

 

sin)()0( vmmumm BABBA 
 

  (iii) 

 
We now divide equation (iii) by equation (ii): 
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Knowing the angle    we can now find  v  from equations (ii) or (iii): 
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So the final velocity of the skaters is  4.86 km/hr at an angle of  39.8 

north of east. 
 

 

Question 6e 
 

A sphere of mass  m  collides elastically with an identical sphere which is 
initially at rest.  Show that their velocities after collision are at right 

angles (provided they are both non-zero). 
 

Solution: 

 
 

 
 

 
 

 
 

 
 

 
 

Momentum conservation gives  mu  =  mv1  +  mv2, using obvious 
notation.  We can cancel the common factor of  m.   

v1 

u1 

v2 



 

 

 

Let us take the scalar product of u with itself: 
 

𝑢 · 𝑢   =    𝑢2   =     𝑣1  +   𝑣2 ·  𝑣1  +   𝑣2   =    𝑣1
2  +   𝑣2

2  +   2𝑣1 · 𝑣2 
 

 (i) 

 
Now we are also told that the collision is elastic, so the kinetic energy is 

conserved: 
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Cancelling the factor of  m/2, we have: 
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  (ii) 

Subtracting equation (ii) from equation (i) we find 

 

0. 21 vv


 

 

It follows that the velocities of the spheres after the collision are at right 
angles.   

 
 

Newton’s law of restitution 
 

We saw above that for an elastic collision the relative velocity along the 
line of impact after a collision is equal to minus the relative velocity 

before the collision:      
 

)()( 1212 uuvv  . 

 
Let us define the relative velocities before and after the collision as  

 

   12 uuur     and   12 vvvr  . 

 
The condition for an elastic collision is then 

 

 rr uv    

 

 
Newton had a very useful insight into what happens in an inelastic 

collision.  He suggested, after making experiments, that if we resolve the 

velocities along the line of impact, the parallel component of the relative 



 

 

velocity is reversed in sign after the collision, but is reduced by a factor e 

(<1).  The component of the relative velocity perpendicular to the line of 
impact is not affected by the collision.  The factor e is called the 

coefficient of restitution, and its value depends on the properties of the 
materials out of which the two objects are made. 

 
Newton’s law of restitution says, therefore, that for an inelastic collision: 

 

    
||||

rr uev    and   


 rr uv . 

 
Here the symbols || and  refer to components parallel and perpendicular 

to the line of impact.  This "law" is not exactly and invariably true: but it 
is a good approximation to what often happens when collisions occur. 

 
 

Application to inelastic collision in one dimension 
 

Consider two objects with masses  m1  and  m2  moving along the same 
straight line.  Let their velocities before and after they collide be  u1, u2  

and  v1, v2 respectively.  Conservation of momentum yields: 
 

22112211 vmvmumum   

   (i) 
We can introduce relative velocities by writing  

 

12 uuu r   

and 

12 vvv r   

 
Equation (i) can now be rewritten as  
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so that 
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It also follows from (i) that  
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 (iii) 

 
 



 

 

The change in the kinetic energy for an inelastic collision is: 
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After a bit more manipulation, using equations (ii) and (iii), it is 

straightforward to show that the loss of kinetic energy in the collision is: 
 

)()( 22

21

21
2
1

rr uv
mm

mm
KE 


 . 

 

If we now use Newton’s law : rr uev  , we find 
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This makes an important connection between the coefficient of restitution 

e  and the degree of inelasticity, in terms of how much kinetic energy is 

lost in the collision.  For a perfectly elastic collision,  Δ(KE) = 0, and this 
corresponds to  e = 1.  For a completely inelastic collision, in which the 

bodies stick together, their relative velocity is zero, so we deduce that 
0e .  In this case the loss of kinetic energy is  
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Bouncing balls 
 

A ball thrown into the air follows a parabolic trajectory, reaching a 
maximum height 

gVz z 2/2
max   

 
The horizontal distance travelled before it reaches the ground is 

 

gVVx zx /2max   
 

As it reaches the ground its vertical component of velocity is  -Vz, , which 

is the negative of its initial value  
 



 

 

Suppose the ball now bounces and the coefficient of restitution is  e.  

Then the ball’s new vertical component of velocity will be + eV, but its 
horizontal component of velocity will be unaffected.  After the first bounce 

the height reached will be smaller by a factor of e2 but the distance to the 
next bounce is reduced by a factor of e.   Each subsequent bounce will be 

scaled in height and range by additional factors of e2 and e respectively, 
as shown below: 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
The trajectory of a ball thrown with a velocity of  14 m s-1  

at an angle of 75  to the horizontal. 

  The coefficient of restitution between the ball and the ground is  0.5. 

 

 

Question 6f 
 
A ball thrown vertically reaches a height of  10  metres.  If the coefficient 

of restitution between the ball and the ground is  0.9, how long will it take 
the ball to come to rest? 

 
Solution:  the time to the first bounce is 

 

gVt z /21   
 
We can find the velocity from the height: 
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sgzt 857.2/22 max1 
 

 
Then the time to the second bounce is et1, and so on.  The total time is 
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The series in the brackets is just an infinite geometrical progression  

whose sum is 
e1

1
.  It follows that the time for the ball to come to rest 

is: 

s
e

t
ttot 57.28

9.01

857.2

1

1 





  

 
 

 

Question 6g 
 

The cue ball in a game of billiards is travelling with a velocity  u when it 
strikes a red ball at an angle    to the line of impact.  If the coefficient of 

restitution between the balls is  e, find the angle at which the cue ball 
travels after the collision. 

 
Solution:  conservation of momentum 

along the line of impact gives: 
 

21 coscos mvmvmu    

 
Cancelling the mass on both sides gives 

 

 coscos 21 uvv 
 

     (i) 

 

From Newton’s law of restitution the component of relative velocity 
perpendicular to the line of impact remains unchanged, so that 

 

 sinsin1 uv   

   (ii) 

Parallel to the line of impact Newton’s law gives: 
 

 cos)cos0(cos12 ueuevv 
 

(iii) 
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Adding (i) and (iii) leads to: 
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Subtracting (iii) from (i) gives:  
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We now divide (ii) by (iii) to give:  

 









cos)1(

sin

cos

sin

2
1

1

1

ue

u

v

v


  

 

and it follows that  

)1(

tan2
tan

e



  

 

Notice that for an elastic collision, when  e =1, this always gives   = /2.  
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