
 

 

Section 7:  Rotational Kinematics 
 

 

7.1   Torque and Newton’s second law  
 
There are two conditions for static equilibrium of a body, namely that (i) 

the vector sum of all the external forces acting on the body must be zero, 
and (ii) the sum of all the external torques acting on the body must be 

zero.   If the first of these conditions is not satisfied then, from Newton’s 

second law, the body would experience a linear acceleration proportional 
to the magnitude of the net force.  Similarly if the second condition is not 

satisfied we would expect the body to experience an angular acceleration 
proportional to the net torque. 

 
Consider a mass m attached 

to a light rod, pivoted at the point P. 
If a force  F  is applied to the mass at 

right angles to rod, there will be 
an instantaneous linear acceleration  a, 

where 

  maF   

  

Since the mass is pivoted at P, it is constrained to move in an arc of 
radius  R, so the linear acceleration  a  is converted into an angular 

acceleration  , such that  Ra  . The force equation therefore 

becomes: 
mRF   

 

If we now multiply both sides by the radius  R, the product  FR  on the left 
hand side becomes the torque  : 

 

 ImRFR  2
 

 

This is Newton’s second law applied to rotational motion.  I  has 

exactly the same form as maF  , with the torque    replacing the force 

F, the angular acceleration    replacing the linear acceleration  a  and the 

role of the mass m being taken by  I, the moment of inertia. 

 
For a point mass rotating about a pivot at a radius R, the moment of 

inertia is defined as  I = mR2.  We will see how to calculate the moment 
of inertia for extended objects below.  
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7.2  Moments of inertia 
 
In the context of rotational motion, the moment of inertia plays a role 

equivalent to mass in linear kinematics.  As we have seen above, the 
moment of inertia for a point mass m rotating about an axis at a radius R 

has the value  I  =  mR2.  Suppose we have a composite system made up 
of several masses  mi, at various distances  Ri  from a common axis about 

which the system rotates at a common angular velocity.  The total 

moment of inertia of the system is then the sum of the individual 
moments of inertia:   
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The moment of inertia of a rigid body 

 
Suppose that a rigid body is rotating about 

the  z  axis and that the body has a uniform 
density  .  We can divide the body up into 

a set of discrete volumes  dVi, so that the 
total mass  m  is given by 
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We can now calculate the moment of inertia of the body by summing over 

all the mass elements   dVi, weighted by the square of the distance of 

each element from the rotation axis: 

 

 
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When the volume elements  dVi  are infinitesimal this can be written as an 
integral: 

 

dVRdmRI   22
 

 

where the integral is taken over the volume of the body. 
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A uniform circular disc 
 

The moment of inertia of a uniform disc, rotating around an axis passing 
through its centre and perpendicular to it, can be easily by integration, 

but an alternative method of calculation is given here which avoids 
calculus.  Firstly, notice that the moment of inertia  I  must be 

proportional to the disc’s mass  M  (if its radius is fixed) and to the square 
of its radius  R  (if its mass is fixed).  That is to say, 

 
𝐼  =    𝑐𝑀𝑅2 

(1) 
where  c  is a numerical constant.  This is obvious on dimensional 

grounds.  Our task is to calculate the value of the constant  c. 
 

Eqn. (1) can be rewritten in terms of the areal density of the disc,  ρ, 
measured in kilograms per square metre.  The mass  M  is equal to  πR2ρ, 

so     
𝐼  =    𝑐𝜋𝜌𝑅4 

(2) 

 
Now consider two discs, equal in density, one of radius  R  and another 

whose radius is greater by a small increment  ΔR.  The two discs are 
illustrated concentrically below: 

 
      

 
 

 
 

 
 

 

 
 

 
 

 
 

 
The moment of inertia of the inner disc,  I(R),  is just  cπρR4, that being 

equation (2) above.  For the moment of inertia of the outer disc,  R  must 
be replaced by  R + ΔR, and it may be written 

 

𝐼(𝑅 +  𝛥𝑅)   =    𝑐𝜋𝜌 𝑅 +  𝛥𝑅 4 

(3) 
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It is tedious but straightforward to multiply out (R + ΔR)4, and the result 

is 
 

𝐼 𝑅 +  𝛥𝑅  =    𝑐𝜋𝜌 . ( 𝑅4 +  4𝑅3𝛥𝑅 +   6𝑅2 𝛥𝑅 2  +   4𝑅 𝛥𝑅 3  +    𝛥𝑅 4 ) 
 

(4) 
 

If  ΔR  is very small compared with  R, then each of the terms in the 
brackets on the right-hand side, following  R4, will be much smaller than 

the term preceding it.  So, to a good approximation (to “first order” in  
ΔR, as we say), the later terms can be neglected and we can just write 

 

𝐼 𝑅 +  𝛥𝑅  =    𝑐𝜋𝜌 . ( 𝑅4 +  4𝑅3𝛥𝑅 ) 
(5) 

 

However, there is another way of obtaining the moment of the outer disc.  
We can simply take the moment of inertia of the inner disc, as in equation 

(2), and add on the moment of inertia of the ring (or "annulus”) between 
the two discs.  Since  ΔR  is small, the circumference of the ring is  2πR.  

Multiplying the circumference by the thickness of the ring,  ΔR, we obtain 
the ring’s area  2πR.ΔR, and multiplying this by the density  ρ  gives the 

mass of the ring,  2πρR.ΔR.  Since the ring is all at practically the same 

distance  R  from the centre (ΔR  being very small) the ring’s moment of 
inertia is obtained simply by multiplying its mass by the square of the 

distance  R, giving 2πρR3.ΔR. 
 

So, we must have 

𝐼 𝑅 +  𝛥𝑅  =    𝑐𝜋𝜌𝑅4    +    2𝜋𝜌𝑅3. 𝛥𝑅 
(6) 

 

but for equations (5) and (6) both to be true, it must obviously be that 
 

𝑐𝜋𝜌. 4𝑅3𝛥𝑅  =    2𝜋𝜌𝑅3𝛥𝑅 ) 
(7) 

giving 

𝑐  =    ½ 
(8) 

 
which means, from equation (1), that 

 

𝐼  =    ½ 𝑀𝑅2 

(9) 
 

and this is the desired formula for the moment of inertia of a disc rotating 
around the axis through its centre and perpendicular to it. 

 
 



 

 

A uniform circular disc: the method of integration  

 
The previous result can be obtained straightforwardly using calculus, 

integrating over the volume of the disc. 
  

We can take the element of 
volume to be a circular ring of radius 

r  and width dr. Then 
 

  drtrdV 2   

 
where t is the thickness of the disk. 

The mass element is then 
 

  drtrdVdm  2  

 
The moment of inertia is then 

 

drtrrdVrdmrI
R

 2
0
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   

so that 

𝐼  =    2𝜋𝜌𝑡  𝑟3

𝑅

0

𝑑𝑟  =    2𝜋𝜌𝑡  
𝑟4

4
 

0

𝑅

  =    ½ 𝜋𝜌𝑅4𝑡 

 

But the total mass of the disk is  tRM 2 .  It follows, therefore, that the 

moment of inertia of the disk is 
 

2

2
1 MRI   

 

which is, of course, the same result as has already been found by a 
different method. 

 
 

A thin spherical shell 
 

What is the moment of inertia of a thin spherical shell rotating around an 
axis which passes through its centre? 

 
Consider the shell as a collection of very small parts (labelled by  1, 2, 3,  

..., i, i+1, i+2, ....) with masses  mi  and positions  ri.  In terms of 

orthogonal Cartesian coordinates  x, y  and  z, the positions  ri  may be 
represented by 

𝑟𝑖   =    ( 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖  ) 
(1) 

and the moment of inertia for rotation around the z-axis is 

r 

a 

dr 



 

 

𝐼𝑧   =     𝑚𝑖 .  𝑥𝑖
2  +   𝑦𝑖

2 

𝑖

 

(2) 

 
because, by Pythagoras’ Theorem,  (xi

2 + yi
2)  is equal to the square of 

the distance of the piece  i  from the z-axis.  In fact, this equation is true 
for an object of any shape at all, not just a spherical shell.  Similarly, the 

moments of inertia for rotation around the x-axis and the y-axis are 
 

𝐼𝑥   =     𝑚𝑖 .  𝑦𝑖
2  +   𝑧𝑖

2 

𝑖

 

(3) 

and 
 

𝐼𝑦   =     𝑚𝑖 .  𝑥𝑖
2  +   𝑧𝑖

2 

𝑖

 

(4) 
Adding all these together, we get 

 

 

𝐼𝑧  +   𝐼𝑥  +   𝐼𝑦   =     𝑚𝑖 .  2𝑥𝑖
2  +   2𝑦𝑖

2  +   2𝑧𝑖
2 

𝑖

 

(5) 

 
Because of the symmetry of a spherical shell, the moments of inertia 

around the  x, y and z  axes must be equal.  The shell looks the same 
from all directions.  So,   

 

𝐼𝑧 =   𝐼𝑥 =   𝐼𝑦  
(6) 

 
Also, in the particular case of a spherical shell, every part of the object is 

exactly the same distance (R, say) from the origin, so 
 

𝑅2   =    𝑥𝑖
2  +   𝑦𝑖

2  +   𝑧𝑖
2 

(7) 

 
independently of  i.  This is the Theorem of Pythagoras in 3 dimensions.  

Putting equations (6) and (7) into (5), and using 
 

 𝑚𝑖

𝑖

  =    𝑀 

(8) 

for the total mass of the shell, we get 



 

 

 

3. 𝐼𝑧   =    2𝑀𝑅2    
(9) 

so that 

𝐼𝑧    =    ⅔  𝑀𝑅2    
(10) 

 

as our final result for the moment of inertia of a thin spherical shell of 
mass  M  and radius  R. 

 
  

Question 7a 
 

What is the moment of inertia of a uniform solid sphere rotating around 

an axis which passes through its centre? 
 

Solution: use basically the same technique that was used earlier to 
calculate the moment of inertia of a disc.  If the sphere has a mass  M  

and a radius  R, then the moment of inertia must be proportional to  MR2.  
Express that fact in terms of the density of the sphere instead of its mass.  

Then, consider the moment of inertia of a sphere whose radius is greater 
than  R  by a small amount  ΔR.  The difference between the two must be 

the moment of inertia of a spherical shell of thickness  Δ, which is given 
by the formula derived in the previous section.  Deduce that the formula 

for the moment of inertia of a solid sphere is given by 
 

𝐼   =    ⅖ 𝑀𝑅2    
 

 
Some terminology: radius of gyration 

 
The radius of gyration, k, is defined so that the moment of inertia of a 

body of mass M, rotating about its centre of mass is 

 
2MkI   

 

This means that the radius of gyration may be calculated via 
 

dmr
M

k  22 1
 

 
Using results derived above and later below we find that the radii of 

gyration for some common shapes are: 
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The Parallel Axes Theorem 
 

The "parallel axes" theorem is a very useful relationship between an 
object's the moments of inertia for rotation around two different axes, 

one of which passes through the object's centre of mass.  The proof of the 
theorem is as follows: 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

A large irregularly-shaped object is illustrated above. 
 

The origin of coordinates is the point O.  Coordinate axes (x and y) are 
illustrated, but we shall not actually need to use them in the calculation 

below.   

 
The origin O  is chosen to be at the object's centre of mass. 

 
We are going to calculate the moment of inertia for the rotation of the 

object around an axis which is perpendicular to the illustration and which 
passes through the point labelled A.  The position vector of A  (in other 

words, its displacement from the origin O) is  a. 
 

The object is imagined to be broken up into a very large number of very 
small parts labelled R1, R2, R3, R4, R5,  and so on.  In general, any of 

these parts is labelled as Ri,  where the  index  i  may take on any of the 

Ri 
ri 
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values  1, 2, 3, 4, 5, and so on.   The position vector of  Ri  is denoted as  

ri.   Let the mass of the part  Ri  be  mi. 
 

It is important to understand that, because  O  is the centre of mass of all 
the parts  Ri  which make up this object, we have 

 

 𝑚𝑖𝑟𝑖
𝑖

 =    0 

 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

To calculate the moment of inertia of the object when it is rotating around 
an axis through  A, the mass  mi  of each part  Ri  must be multiplied by 

the square of its distance from that axis, i.e. the distance (in the plane of 
the diagram) from  A  to  Ri.  The displacement vector from  A  to  Ri  is 

 𝑟𝐶𝑀   =     𝑚𝑖𝑟𝑖
𝑖

 𝑚𝑖

𝑖

  

𝑟𝐶𝑀   =   
1

𝑀
   𝑚𝑖𝑟𝑖

𝑖

 

𝑀  =     𝑚𝑖

𝑖

 

 𝑚𝑖𝑟𝑖
𝑖

 =    0 

This is so because, in any coordinate system, the centre of 

mass of a set of masses  mi  at positions  ri  is given by  
 

(1) 
or 

(2) 

 
where the total mass of the object is represented by  M, so 

that 

(3) 
 

However, because the origin  O  has been chosen to coincide 

with the centre of mass, the position vector  rCM  of the 
centre of mass is zero.  In other words, the centre of mass is 

at zero distance from the origin.   Because  rCM  =  0,  
equation (1) above leads to  

 

(4) 
 
 



 

 

got by just subtracting their position vectors,  a  and  ri, and so the 

square of the distance is 
 

 𝑟𝑖  −   𝑎 
2
 

 

The moment of inertia around  A  is therefore    
 

𝐼𝐴   =     𝑚𝑖 𝑟𝑖  −   𝑎 
2

𝑖

 

or 

𝐼𝐴   =     𝑚𝑖 𝑟𝑖
2   −   2𝑟𝑖 · 𝑎    +   𝑎2 

𝑖

 

or 

𝐼𝐴   =     𝑚𝑖𝑟𝑖
2

𝑖

   −     𝑚𝑖 . 2𝑟𝑖 · 𝑎 

𝑖

   +     𝑚𝑖𝑎
2

𝑖

  

 

and using equation (3) from the box above, this gives 
 

𝐼𝐴   =     𝑚𝑖𝑟𝑖
2

𝑖

   −    𝑀. 𝑟𝐶𝑀 · 𝑎    +    𝑀𝑎2 

 

and because of equation (4) the middle term on the right hand side is 
zero, leaving 

𝐼𝐴   =    𝐼𝐶𝑀    +    𝑀𝑎2 

 
This is the "parallel axes theorem".  It means that, if we know the 

moment of inertia for the rotation of an object of mass  M  around an axis 
which passes through its centre of mass, then we can easily calculate its 

moment of inertia for rotation around any other parallel axis: we just add 

on  Ma2, where  a  is the distance between the two axes. 
 

 
A uniform straight rod 

 
Although the moment of inertia of a thin uniform rod, rotating around an 

axis perpendicular to it, can be calculated easily by integration, another 
method of calculation is given here using the Parallel Axes Theorem.  

Suppose that  I(M, L)  is the moment of inertia of a uniform rod of mass  
M  and length  L  rotating around an axis which is perpendicular to the rod 

and passes through one of its endpoints. 
 

The moment of inertia  I(M, L)  must be proportional to  M  and to the 
square of  L.  That is to say, 

 



 

 

𝐼  =    𝑐𝑀𝐿2 
(1) 

 
where  c  is a numerical constant.  This is obvious on dimensional 

grounds.  What is the value of  c?   

 
The rod is illustrated below.  It is understood that the length  L  is much 

greater than the thickness of the rod.  For rotation around an axis passing 
through A or B, then, the moment of inertia is given by equation (1). 

 
 

 
 

 
 

 
 

 
 

But what is the moment of inertia for rotation  around an axis through the 

point C at the centre of the rod?  The point C is the rod’s centre of mass, 
so let us designate that moment of inertia by ICM.  Now,  ICM  can be 

regarded as the sum of two parts: the moment of inertia of the right-hand 
half of the rod (CB, rotating around C) and that of the left-hand half of 

the rod (AC, also rotating around C).  These are equal to one another, 
and each is the moment of inertia of a rod of mass  M/2  and length  L/2.  

So, adding the two halves together, we get 
   

𝐼𝐶𝑀    =     𝑐.  
𝑀

2
 .  

𝐿

2
 

2

  +    𝑐.  
𝑀

2
 .  

𝐿

2
 

2

 

(2) 

whence 

𝐼𝐶𝑀    =     ¼ 𝑐𝑀𝐿2 
(3) 

 

The trick is now to use the parallel axes theorem to obtain, from equation 
(3), a formula for the moment of inertia of the whole rod around an axis 

through one of its endpoints (A or B).  The parallel axes theorem can be 

written 

𝐼𝐴   =    𝐼𝐶𝑀   +    𝑀𝑎2 
(4) 

In this instance,  ICM  is given by equation (3) and the distance  a  

between the two axes is simply the distance between the points A (or B) 
and C, that is to say  L/2.  Therefore, 
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𝐼𝐴   =    ¼ 𝑐𝑀𝐿2    +    𝑀  
𝐿

2
 

2

 

(5) 
or 

𝐼𝐴   =    ¼ (𝑐 + 1)𝑀𝐿2 
(6) 

 
But, if our theory is consistent, this has to be equal to the expression in 

equation (1).  Therefore, 
 

𝑐𝑀𝐿2   =    ¼ (𝑐 + 1)𝑀𝐿2 
(7) 

from which it follows that  

𝑐   =    ⅓ 
(8) 

so finally we arrive at 

𝐼  =    ⅓ M𝐿2 

(9) 

 

as the formula for the moment of inertia of a thin uniform rod rotating 
around an axis perpendicular to it and passing through one end. 

 
 

Question 7b 
 

What is the moment of inertia of a thin uniform rod, of length L, rotating 

around its centre of mass? 
 

Solution: the required moment of inertia is what was called  ICM  in the 
section above.  Its value is given by equation (3) above, with the value of  
c  being  ⅓ (eqn. (8) above)/  So, for a rod rotating around its centre, 
 

𝐼  =    
1

12
 M𝐿2 

 
 

Question 7c 
 

If you are familiar with integral calculus, verify the solution of question 7b 

by integrating over the length of the rod. 
 

Solution:  let    be the mass per unit length of the rod. We take the mass 

element to be that portion of the rod between  x  and  x+dx, then 

 

dxdm   

 



 

 

 

 
 

 
 

 
 

 
 

The moment of inertia is then 
 

𝐼  =   𝑥2𝑑𝑥

𝐿/2

−𝐿/2

  =   𝑥2𝜌𝑑𝑥
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    =  
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12
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The total mass is LM  , so that 2

12
1 MLI  . 

 

 
The perpendicular axes theorem 

 

The perpendicular axes theorem is  
a useful rule applicable to objects 

which are thin and flat.  Such an 
object is sometimes called a "lamina".   

 
Consider a lamina rotating around 

an axis which is perpendicular to itself. 
We will use a coordinate system such 

that the axis of rotation is the  z  axis 
and the lamina is in the  x-y  plane 

as shown in the diagram. 
 

The fragment  i  has a mass mi  and coordinates  xi  and  yi.  (zi = 0 
because the lamina is a flat object in the  x-y  plane.) 

 

The moment of inertia of the body is 
 

𝐼𝑧   =     𝑚𝑖

𝑖

.  𝑥𝑖
2  +   𝑦𝑖

2  

 
because  (xi

2  +  yi
2)  is (by Pythagoras' Theorem) the square of the 

distance of the fragment  i  from the axis of rotation, i.e. from the z  axis.  
But this can be split into two sums: 

 

𝐼𝑧   =     𝑚𝑖

𝑖

𝑥𝑖
2   +     𝑚𝑖

𝑖

𝑦𝑖
2 
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But the first sum is just the same as the moment of inertia for rotation 

around the  y  axis, and the second sum is the moment of inertia for 
rotation around the  x  axis.  So, switching the order of the two sums, we 

can write 

𝐼𝑧   =    𝐼𝑥   +    𝐼𝑦  
 
and this is the perpendicular axes theorem.   

 
 

Question 7d 
 
A shop sign consists of a circular disc of mass m 

and radius a hinged along a tangent as shown in 
the sketch.  Find a formula for the moment of 

inertia of the sign when it rotates around the hinge. 
 

 
 

 

Solution:  it was shown earlier that a disc rotating about an axis passing 
through its centre, perpendicular to its plane, has a moment of inertia 

which, in terms of  m  and  a, is 
2

2
1 maI z   

 

Using the perpendicular axes theorem we have 
 

yxz III 
 

and by symmetry 
 

yx II 
 

 
It follows that 

2

4
1

2
1 maIII zyx 

 
 
Here  Ix and  Iy  would be the moments of inertia for rotation around axes 

which are in the plane of the disc and pass through its centre.  To find the 
moment of inertia for the disc rotating about the tangential axis 

illustrated, which is offset from the disc's centre by a distance equal to 

the radius  a, it is necessary to use the parallel axes theorem:  
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4
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4
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tan mamamamaII x   
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Moments of inertia for objects of various shapes 
 

For a useful summary of the formulae for the moments of inertia of 
objects of a number of different shapes, see Wikipedia. 

 
 

 

Question 7e 
 

 
Two masses  M1  and  M2  are connected 

by a light inextensible cord that passes 
over a cylindrical pulley of mass  m  and 

radius  r. The cord has no tendency to 
slip on the pulley, so tensions in the  

two portions of the cord are different, 
T1  and  T2, as show in the diagram.  Find 

the linear acceleration of the masses 
once they are released. 

 
Solution:  firstly we write down the moment 

of inertia of the pulley: 

 

   

2

2
1 mrI    

 

Now the torque on the pulley is 
 

𝛤 =    𝑇2 − 𝑇1 𝑟 
     

and  , the angular acceleration of the pulley, is given by the rotation 

counterpart of Newton’s second law: 
 

I  

 
Substituting for the torque and the moment of inertia gives 

 

𝛤 =    𝑇2 − 𝑇1 𝑟 =   𝐼𝛼 =   ½ 𝑚𝑟2𝛼 
 
Now we can relate the angular acceleration    to the linear acceleration  

a  using  ra  .  If we insert  ra /  into the torque equation and 

divide both sides by the common factor of  r , we find: 
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There are also the equations of motion ("F = ma") for the two masses: 
 

      aMTgM 222     (ii) 

and 

       aMgMT 111     (iii) 

 

If we add equations (ii) and (iii) we get 
 

aMMTTgMgM )()( 211212  . 

 
We now substitute for T2  T1 from (i) and find: 

 

amMMgMM )()(
2
1

2112  . 

 

Hence the acceleration of the masses is  
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7.3  Work and Power in Rotational Motion 
 

 
In the sketch a block of mass  m  is being 

raised at a  constant rate by a cable that 
winds around a rotating drum with radius  R. 

Since the block is not being accelerated, 
the tension in the cable  F  is equal to the 

weight of the block mg.  Suppose the block 
is raised through a distance  s.  The work 

done by the force F is then just the force 
times the displacement: 

 

   FsW   

 

Now we can relate the distance s to the angular displacement    by  

 

Rs   

 

(see diagram following) and inserting this into the work equation gives  
 

  FRFsW  

R 

m 

F 



 

 

 

 
 

 
 

 
 

 
 

 
The work dome in rotational motion is the product of the torque and the 

angular displacement. 
 

Power is the rate at which work is done, and we have already 
shown that 

 

Fv
dt

ds
F

td

dW
P    

 
where  v  is the velocity with which the block is being raised.   The 

angular velocity  is related to the linear velocity  v  by  Rv  .  It 

follows therefore that for rotational motion 

 

  FRFv
td

dW
P  

 

Power exerted in rotational motion is the product of 

the torque and the angular velocity.  

 
 

 

7.4   Rotational kinetic energy 
 

Suppose a body with moment of inertia  I  is rotating at an angular 
velocity   i , and is then acted on by a constant torque  .  In this case 

the angular velocity should increase linearly with time, the angular 
acceleration being given by  I .  From the equations for rotational 

motion we can work out the angular velocity following a certain angular 
displacement : 

 

 222  if  

 

It follows that the work done by the torque in acting over this 
displacement is 

 

R 

 

s 

s 
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We recognise that the work done has been stored as a form of kinetic 
energy of the body.  We deduce that  

 
 

 
 

 
 

 
The definition of kinetic energy for a rotating body,  ½I 2, has the same 

form as for linear motion,  ½mv 2, with the moment of inertia playing the 
part of mass and the angular velocity     substituting for the linear 

velocity  v.   
 

 
The kinetic energy of a rolling wheel 

 

As a wheel rolls along a surface there are two components to the kinetic 
energy, one due to the linear velocity of the centre of mass,  

 
2

2
1 mvKElin   

 

and the other due to the rotational kinetic energy, 
 

2

2
1 IKErot   

 
The condition for rolling without slippage is that  rv  , so the total 

kinetic energy is 
 

𝐾𝐸𝑇𝑂𝑇  =   ½ 𝑚𝑣2  +   ½ 𝐼𝜔2  =   ½  𝑚 + 
𝐼

𝑟2
 𝑣2 

 

In the case of a solid disk, where 
2

2
1 mrI  , 

 
2

4
3 mvKEtot   

 

while for a hoop-like wheel, where all the mass is on the rim, 
2mrI  and  

 
2mvKEtot   

 
 

Rotational kinetic energy  =  ½ I ω2 



 

 

Question 7f 
 
Three objects: a solid sphere, a solid 

cylinder and a hoop are rolled down an 
incline.  Each has the same mass M  

and radius R and they all travel through 
the same vertical distance h.  What are 

their linear velocities, and how do these  

compare to the velocity of a cubic block 
that slides down the same incline, without 

friction? 
 

Solution: we use the energy method here: the decrease in the PE of each 
object is Mgh .  This must equal the increase in the total KE 

 

½ 𝑀𝑣2  +   ½ 𝐼𝜔2   =    ½  𝑀 +  
𝐼

𝑅2
  𝑣2 

 

It follows that 
 

½  𝑀 + 
𝐼

𝑅2
 𝑣2   =    𝑀𝑔𝑕 

 

so that 
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For the sphere, 
2

5
2 MRI  , so ghghvsphere 195.17/10   

 

For the cylinder 
2

2
1 MRI  , so ghghvcylinder 155.13/4   

 

For the hoop      
2MRI  , and so ghvhoop   

 

For the block that slides without friction: ghv 22  , so 

 

ghghvblock 414.12   

 

The block travels fastest, followed by the sphere! 
 

 

 

h 



 

 

Question 7g 
 
A block of mass  M  is suspended from a cable which 

wraps around a cylindrical drum of mass  m  and 
radius  R.  The block falls from rest.  What is the 

velocity of the block after it has fallen, from rest, 
through a height  h? 

 

 
Solution:  method 1 

 
The equation for the linear acceleration of the mass  M  is 

 
MaTMg 

 
   (i) 

 
The equation for the angular acceleration of the drum is    

 

 2

2
1 mRITR   

(ii) 

From (ii), since Ra / , it follows that 
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We now substitute for T in eq.(i): 
 

MamaMg 
2
1

 
 
leading to  

amMMg )(
2
1

 
 

 
and so the linear acceleration is: 
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We now use the equation: asuv 222  , with u = 0 and s = h: 
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Dividing top and bottom by M and taking the square root gives: 
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Solution: method 2  
 

The second approach uses conservation of energy for the system: the  
increase in the kinetic energy (linear + rotational) must be equal to the 

decrease in the potential energy of the mass M when it falls through a 
distance h.  It follows then that: 

 

MghIMv  2

2
12

2
1  . 

 

Now we only need to substitute  I = ½mR2  and use the relation  ω= v/R  
and the same answer results!  This is clearly a much neater route to the 

solution. 
 

 

 

7.5   Angular momentum and angular impulse 
 
Consider a body with mass  m  attached to a 

light rod, of length  r, pivoted at point P. 
Suppose the body, initially at rest, experiences 

an impulse  J, resulting from a force  F  applied 

for a time  t, so that  tFJ  .   

 

From Newton’s laws, the change in the momentum of the body is equal to 
the impulse:  Jmv  )( . 

 
However, since the mass is pivoted, it begins to rotate at an angular 

velocity    given by  v = ωr.  We can think of this rotational motion as 

resulting from an angular impulse, which is the  moment  of the linear 

impulse  J: 
 

ttrFJr  )( . 

 

 

An angular impulse is the product of a torque  

and the time t for which it acts. 

 

 

 

J 

P 
m 

r 



 

 

The result of the angular impulse is to produce a rotation about the pivot: 

 

)()( 2rmmvrtJr   

 

This equation says that the effect of an angular impulse is to produce a 
change in the quantity  mvr  =  mωr2.   This quantity is called the angular 

momentum of the body.  
   

 

The angular impulse is equal to the change in 

the angular momentum of the system. 

 

 
 

Angular momentum is the product of the 
momentum of a moving object and the  

perpendicular distance between the line of 

motion and the axis of rotation. 
 

 
 

 
The usual symbol for angular momentum is  L  and it is measured in units 

of  kg m2 s-1  or  N m s.   
 

 

The angular momentum of a body of mass m rotating around an axis at a 

distance r with angular velocity  is given by
2rmL   

 
 

This definition works for a point mass, but what happens for an extended 

object?  Suppose a body is subjected to a torque    for a time  t.  If the 

body has an initial angular velocity  i , it will be subjected to an angular 

acceleration  , so that after a time  t  its angular velocity will have 

increased to  f , where 

tif    

 
From Newton’s 2nd law for rotational motion: I , where I is the 

moment of inertia of the body.  It follows that 
 

t
II

if )( 



  

and so the angular impulse is 
 

 

 

   p =mv 

r 



 

 

𝛤𝑡  =    𝐼 𝜔𝑓 − 𝜔𝑖   =    𝛥𝐿 
 

This gives another representation of the angular momentum: 

 

Angular momentum is the product of the moment 

of inertia and the angular velocity: IL   

 
Clearly this is the rotational equivalent of linear momentum  mv, since   

is the angular velocity and  I  plays a role in rotational motion equivalent 
to mass in linear motion.  

 
 

The rate of change of angular momentum 
 

If we suppose that the torque is applied for a short time,  t, it would 

follow from above that  ΓΔt = ΔL, so in the limit of  Δt → 0  we have that 

the rate of change of the angular momentum is equal to the net applied 

torque acting on the system: 
 

td

dL
  

 

 
The conservation of angular momentum 

 
If the system is not subjected to external torques, then, from above, the 

rate of change of the angular momentum must be zero.  It follows that 
the angular momentum is then a constant, independent of time.  This is a 

basic principle of physics, as fundamental as the conservation of linear 
momentum: 

 

If there are no external torques acting on the 

system, then the angular momentum is conserved. 

 

A particular example where conservation of angular momentum applies is 
for a system acted on by central forces, for example, consider the planets 

in orbit around the Sun.  A planet is kept in its orbits by the gravitational 

attraction between the Sun and the planet.  This acts along the line 
joining the two bodies, so there is no torque involved.  The angular 

momentum is therefore conserved. 
 

 
 

 
 



 

 

Question 7h 
 
A satellite is on a highly elliptical 

orbit around the Earth, where 
the distance of closest approach 

(perigee) is 10000 km and the 
furthest distance (apogee) is 

15000 km, both measured from 

the centre of the Earth. 
What is the ratio of the orbital 

speeds at perigee and apogee? 
 

Solution:  since angular momentum is conserved, 
 

aapp rmvrmvL   

 
where subscript p means perigee and subscript a means apogee.  The 

satellite will be travelling faster at perigee than at apogee: 
 

15000
1.5

10000

p a

a p

v r

v r
    

 
 

Question 7i 
 

 
The Sun has a radius of  695000 km  and a mass of  21030 kg. It rotates 

on its axis once every 25 days.   Suppose the Sun collapsed into a 
neutron star with the same mass but a radius of only 10 km.  How fast 

would it rotate? 
 

Solution:  assuming the Sun to have a uniform density, we can take its 
moment of inertia to be  

2

5
2 MRI   

Its angular momentum is then 
IL   

 

 Since angular momentum is conserved in the collapse, 
 

ffii II    

 
It follows that the ratio of the angular velocity after collapse to that 

before the collapse would be: 
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so that  
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This corresponds to 2236 revolutions per second, or a period of 0.45 

milliseconds. 
 

 
 

Angular momentum and torque as vector quantities 
  

Suppose a body is at a position  r  and 
has a linear momentum  p= mv.  From 

our definition of the angular momentum, 
it is the component of the momentum 

at right angles to the radius vector  r  
that produces the “turning moment”. 

 
The angular momentum is therefore 

 

  sinmvrL   

 , 
where  is the angle between  r  and  p, as shown in the diagram.  

Another way of writing this is in terms of a vector product (or cross 
product): 

𝐿   =    𝑟    ×    𝑝 

 
The order in a vector product is important 

since  
 

 𝐴  ×   𝐵  =  − 𝐵   ×  𝐴 
 
To remember the convention,use a 

right-anded set of axes, with unit vectors 
i,  j and k along the x, y, and z axes.  Then, 

 

𝑖  =   𝑗   ×   𝑘 

   

This gives a “right hand rule”: imagine your right index finger pointing 
along z, and your right thumb aligned along x. Then a clockwise rotation 

of the thumb from x to y is like the motion of a screwdriver, 

r 

p 
 

i 

k 

j 



 

 

driving a screw along the positive z axis.   Conversely, going clockwise 

from y to x would require the index finger to point along the negative z 
direction. This corresponds to  j x i  =  - k. 

 
Using this rule, since  L  =  r x p, we can see 

from the sketch on the right how to draw the 
direction of the angular momentum L vector 

when the position vector r and the momentum 
vector p are perpendicular to each other. 

 
Reversing the direction of p would reverse L  

so that it pointed downwards, as shown in the 
second sketch. 

 
The conservation of angular momentum implies 

that both the magnitude and direction of L are 

constant with time.  This means, for example, 
that the planets have to move in fixed plane that 

passes through the Sun. 
 

In exactly the same way we can see that a torque may also be  
represented by a vector product: the magnitude of the torque depends on 

the product of the radial distance from the pivot and the component of 
the force normal to the radius vector: 

 

  sinFr  . 

 

Clearly we can then write a torque as: 
 

𝛤   =    𝑟    ×   𝑝 

 

The direction of the torque vector is also given by the right-hand rule, so 
that in the sketch above the torque points out of the image.  It makes 

sense that a clockwise torque has an opposite sign to an anticlockwise 
torque, since if two equal and opposite torques are applied to a system, 

they would cancel each other out. 
 

It follows that when we write down the equation that relates the rate of 
change of angular momentum to the applied torque, we should really 

write this as a vector equation:  
 

𝛤   =    
𝑑𝐿

𝑑𝑡
 

 
The new information that this equation gives us is that direction in which 

the angular momentum changes is parallel to the direction of the applied 
torque. 
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The precession of a gyroscope 

 
A gyroscope is a flywheel supported 

on a pivot so that we may investigate 
how it is affected by external torques. 

In the sketch the flywheel is rotating 
clockwise when viewed from the pivot 

P, so the angular momentum vector  L  
points along the axis, away from the 

pivot, as shown.  Since the axis is  
horizontal, and the gyroscope is only 

supported at the pivot, there will be a 
torque   = Mgr  due to the weight of the 

gyroscope.  This is a clockwise torque, so its direction is into the plane of 
the paper, normal to the angular momentum  L.   

 

From what we saw in the previous subsection, the effect of a torque is to 
produce a change in the angular momentum in a direction parallel to the 

direction of the torque: 

𝛥𝐿   =    𝛤𝛥𝑡 
 
This moves the direction of  L  in a perpendicular direction, into the paper.  

Since the torque always remains perpendicular to  L, the angular 
momentum continues to follow the direction of the torque, and the whole 

gyroscope precesses on its pivot.  The axis of the gyroscope rotates 
around in a circle (anticlockwise, viewed from the top).  If we spun the 

flywheel in an anticlockwise direction, the direction of the precession 

would be reversed.  
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7.6  Comparing linear motion and rotation 
 
The table below summarises analogies between linear motion and 

rotation: 
  

 

Linear motion Rotation 

Mass m  I  Moment of Inertia 

Velocity v    Angular velocity 

Acceleration a    Angular acceleration 

Force F    Torque 

Newton’s 2nd law maF   I   

Work Fs   Work 

Power Fv    Power 

Kinetic Energy 
2

2
1 mv  

2

2
1 I  Kinetic Energy 

Impulse tF  t  Angular  

Momentum mvp   IL   Angular  

Force = rate of change of 

momentum td

dp
F   

td

dL
  Torque = rate of change of 

angular momentum 

 

 
  



 

 

7.7  Examples involving both linear and angular 
 impulses 
 
 

Question 7j 
 

A snooker ball has a radius  R.  It is set into motion by a sharp horizontal 
impulse from the cue.  At what height above the table should the player 

strike the ball so that in the subsequent motion the ball rolls without 

slipping? 
 

Solution:  suppose the cue strikes 
the ball at a height  h, imparting 

an impulse  J.  The change in the 
linear momentum is equal to 

the linear impulse: 
 

  mvJ    (i) 

 

However, the impulse also produces 
a rotation of the ball about the centre 

of mass.   

 
The angular impulse is  

)( RhJ   

 
but the height  )cos1(  Rh , so we can write the angular impulse as 

 
cosJR   

 (ii) 

The change in the angular momentum must be equal to the angular 
impulse, so that 

 cosJRI 
 

 (iii) 

For a solid sphere the moment of inertia is  
2

5
2 mRI  .  From (iii), 

therefore, we have 

mR

J

2

cos5 
 

 
  (iv) 

 

Now, the condition for rolling is that  Rv  .  We can then compare  v 

from (i) to  R   from (iv): 
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J 
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m

J
R
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J
v

2

cos5 
  . 

 

From this equation we find 

5
2cos 
 

 

This is the condition for the ball to roll without slipping: it is only for this 
value of    that the linear and angular impulse are in the ratio required to 

impart linear and angular velocities in the correct ratio for rolling.  Since  
 

)cos1(  Rh  

 
the required height of the cue is 

 
RRRRh 4.15/7))5/2(1()cos1(   . 

 
 

 

Question 7k 
 

Show that the “sweet spot” on a cricket bat is 2/3 of the way down the 
blade from the handle.  If the bat strikes a ball at this point the batsman 

feels no recoil from the stroke, whereas if the ball is struck above or below 
this point, the bat jars the batsman’s wrists.   

 
Solution:  the diagram shows the bat sideways on.  The blade is of length  

2a and the impact of the ball is represented as the linear impulse  J  at a 
distance  b  below the handle.  The recoil of the bat felt by the batsman is 

represented by the impulse  JR  at the handle.   

 
The total impulse is equal to the change in 

momentum of the bat so that  
 

  MvJJ R   

       (i) 
 

Here  M  is the mass of the bat and  v  is the 
linear velocity of the centre of mass after the 

impact. 
 

The angular impulse gives rise to a change in 
the angular momentum, with an angular velocity   

   around the handle: 

  

b 

2a 

J 

JR 

G  



 

 

HIbJ 
 

   (ii) 

 
where   IH   is the moment of inertia of the bat about the handle end.   

 
Assuming that the bat can be represented approximately as a rectangular 

plate of length  2a, the moment of inertia about the centre of mass  G  is  
 

2

3
1 MaIG   

 
so the moment of inertia about the handle is, using the parallel axes 

theorem,  
2

3
42 MaMaII GH   

 

The condition for rotation of the centre of mass about the handle connects 
the linear velocity of G and the angular velocity:  av  . 

It follows from (ii) that   
 

Mav
a

v
MaIbJ H 3

42

3
4    

 (iii) 
Substituting for Mv  from (i) we find 

 

𝑏𝐽  =    
4

3
 𝑎 𝐽 + 𝐽𝑅  

 
so the recoil impulse is: 
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  (iv) 

The recoil vanishes when 
 

ab 43   
 i.e. when 

ab
3
4

 
 

This corresponds to 2/3 of the way down the blade from the handle.   
 

If the ball strikes the bat above this point, it can be seen from (iv) that JR  
is negative, i.e. in a direction opposite to the impulse from the ball. When 

the ball strikes below the sweet spot, the recoil at the handle is positive, 
in the same direction as the impulse from the ball.  

  
 



 

 

7.8  Motion in a circle 
 
Here, we scrutinise the motion of a body constrained to move on a 

circular path at a constant angular velocity.  The key feature to 
understand here is that while the magnitude of the linear velocity of the 

body is constant, the direction of the velocity keeps changing, so the body 
is subject to an acceleration. 

 

Consider the positions  r 1  and  r 2  of a body in circular motion at two 
successive instants.  The movement of the body between these instants is 

represented by the vector  r  = r 2  r 1, as illustrated:   

 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
If the angle    is small (i.e. the time interval is small) we may 

approximate the chord  r  by the arc  r, where  r  is the radius of the 

circle.  Now, since the angular velocity is constant, we can write   = t.  

It follows that the linear velocity of the body is 
  

r
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In the limit of  0   it is clear that the instantaneous velocity of the 

body is perpendicular to the radius vector. 
 

Now we need to look at the way the linear velocity changes with time.  In 
the figure following, the position vectors and the instantaneous velocities  

v 1  and  v 2  are shown in on the left. 
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Motion in a circle showing (left to right) the 

position, velocity and acceleration vectors. 

 
 

In the central diagram, the velocity vectors are drawn with a common 
origin: these vectors also rotate on a circle at the same rate, but they are 

rotated by /2 in phase by comparison with the position vectors, since 

each velocity vector is normal to its corresponding position vector.  The 

change in velocity is  v =  v 2   v 1, and using the same approach as 

above, if    is small we may approximate the chord  v  by the arc v, 

where  v, the magnitude of the velocity, is the radius of the circle in the 
central part of the diagram.  Now we can write   = t, and it follows that 

the linear acceleration of the body is  
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Using the result rv  , it follows that the acceleration of the body is  

 

r

v
rva

2
2    

 
 

Again it is clear that in the limit of  0   the instantaneous acceleration 

of the body is normal to the velocity vector.  On the right of the diagram 

above, the acceleration vectors have been drawn with common origins.  It 
may be that the acceleration vector is always anti-parallel to the position 

vector. 
 

If we now plot the instantaneous position, velocity and acceleration 

vectors on the same diagram, as in the diagram below, we see that the 
acceleration vector points along the radius vector towards the origin O.  
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For this reason the acceleration in circular motion is called centripetal 

acceleration (centripetal  seeking the centre). 

 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
For an object to move in a circle, a force must be applied to provide the 

centripetal acceleration.  For example a mass on the end of a string can 
be constrained to move in a circle by the tension in the string: 

  

 
 

In the case of a racing car travelling on a circular race track, the 
centripetal acceleration is provided by the sideways frictional force of the 

tyres on the track. For a satellite orbiting the Earth, or a planet orbiting 
the Sun, it is the gravitational attraction that provides the centripetal 

acceleration. 
 

 

Question 7l 
 

A mass of 2 kg is attached to a cord 25 cm long and whirled in a 
horizontal circle at 200 rev min-1.  What is the tension in the cord? 
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Solution:  the centripetal force is  
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The conical pendulum 

 
The illustration below shows a small bob of mass  m  attached to a cord of 

length  L.  It rotates in a horizontal plane at a constant angular  
velocity.  

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

This is called a conical pendulum, since the cord moves on the surface of 

a cone.  In this case the centripetal acceleration is provided by the 
horizontal component of the tension in the cord: the equation of motion of 

the mass is 

Rm
R

mv
T 2

2

sin     

 (i) 

Resolving the forces vertically gives 
 

mgT cos  

We also have 

sin
L

R
 

 

T 

R 

mg 

 

L 
H 



 

 

so that from (i) 
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R
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and therefore 


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2 mg
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The angular velocity of the pendulum is therefore 
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where H is the vertical height of the mass below the pivot point.  The 

period of the conical pendulum is then: 
 

g

H





 2

2
  

 
Note that the period is independent of the mass of the body. 

 
 

The orbits of planets, moons and satellites 
 

Suppose a planet of mass  M  has a moon of mass  m  in a circular orbit 
of radius  R.  Here the centripetal force that keeps the moon in its orbit 

is provided by the gravitational attraction between the two bodies. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

From Newton’s law of universal gravitation the force is 
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where  G  is the gravitational constant (6.6710-11 N m2 kg-2)  The 

equation of motion of the moon is  

 

2

2

R

Mm
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It follows that the angular velocity is 
 

3R

GM
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 and therefore that the period of the orbit is 
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R3

2
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This proves one of Kepler’s law’s of planetary motion, that the square of 
the period of an orbit is proportional to the cube of the radius. 

 
 

Question 7m 
 
Show that Newton’s law of gravitation can consistently explain both the 

acceleration of a falling apple and the period of the Moon’s orbit around 
the Earth. [The radius of the Earth is 6371 km and the radius of the 

Moon’s orbit is 3.82105 km.]. 

 

Solution:  firstly the force on an apple of mass  m  at the Earth’s surface 
is 

2

ER

Mm
GF   

 

where M is the mass of the Earth and RE is the radius of the Earth. The 
acceleration of the apple is then 

 
2// ERGMmFg   

 

Now g = 9.8 m s-2, and we are told that  RE =6.371  106 m.  It follows 

that 
2314262 10977.3)10371.6(8.9  smgRGM E . 

 



 

 

From the value of G the gravitational constant (6.6710-11Nm2kg-2) we 

may deduce the mass of the Earth: 
 

kgGGMM 241114 1096.51067.6/10977.3/  
. 

 
Now we can check this value for GM from the radius of the Moon’s orbit, 

which has a period of 27.3 days.  From above the period of the orbit is 
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We can rewrite this result to give: 

 

𝐺𝑀 =   
4𝜋2𝑅3

𝜏2
 =   

4𝜋2 3.82 ×  108 3

 27.3 × 24 × 3600 2
 =   0.396 × 1015   𝑚3 𝑠−2   

 
This value agrees well with that deduced for the acceleration of the apple, 

so we deduce that Newton’s inverse square law of gravity can explain 
both the orbit of the moon and the motion of an apple as it falls off the 

tree. 

 
 

 

7.9 The stability of a vehicle travelling in a circle 
 
When a motor vehicle rounds a bend in a road, the centripetal 

acceleration is provided by the adhesion between the tyres and the road.  

If the adhesion is inadequate (e.g. due to ice or oil on the road, bald tyres 
etc.) then the vehicle will slide at a tangent to the curve and run off the 

road.  There is a second stability criterion due to the turning moment of 
the friction about the centre of gravity.  In the case of a motorcycle, the 

rider leans sideways into the bend, producing an equal and opposite 
turning moment.  If a car were to take a bend at too high a speed, the 

turning moment due to the friction could cause the car to overturn.  Let 
us examine these stability criteria in turn.  

 
 

 
 

 
 

 

 
 

 



 

 

A motorcycle 

    
 

 
 

 
 

 
 

 
 

 
Suppose a motorcyclist is rounding a bend with a radius of curvature  R  

at a velocity  v. The centripetal acceleration required is 
 

Rva /2  

 

The maximum sideways friction that can be provided by the adhesion  
between the wheels and the road surface is  

 

Nf s  
 

where   s  is the coefficient of static friction.  If the mass of the rider plus 

machine is  M, then  

MgN 
 

and   

MgNf ss  
 

 

The greatest allowed acceleration is then 
 

gMfa s /
 

 
so the maximum velocity at which the bend can be approached is when  

 

gRva s /2

 
giving  

gRv smax  

 
Now let us consider the effect of the turning moment of the friction.  

Suppose that the centre of gravity  G  of the motorcycle plus rider is a 

distance  h  above the ground and the rider tilts the bike at an angle    to 

the vertical when rounding the bend.  The stability condition is then that 

the turning moment about the centre of gravity  G  due to the frictional 
force  f between the wheels and the road is balanced by the turning 

 

h f 

Mg 

N 
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moment of the normal reaction force  N.  Referring to the figure above, 

we see that the condition is: 
 

 sincos hNhf 
 

 (i) 
Now we can write

 
MgN 

 

 
and 

RMvf /2
 

 

Inserting these results into (i) gives 
 

 sin/cos2 MghRhMv   

 
It follows that the angle  must satisfy the condition 
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Question 7n 
 
A motorcyclist goes around a bend of radius 30 m. If the coefficient of 

friction between the tyres and road is 0.32, calculate 
 

(a) The maximum velocity at which the machine may negotiate the 
 bend, and 

 
(b) The required angle of inclination of the motorcyclist to the vertical. 

 
Solution:  from the first stability condition  

 
1

max 7.9308.932.0  msgRv s  

 

or  34.9 km.h-1.  The angle is then 
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A car 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

Consider a car taking a bend of radius  R  at a velocity  v.  Suppose  
that the height of the centre of mass above the road is  h  and the 

lateral wheel base is  2b.  The centripetal acceleration required is 
 

Rva /2  
 
This is provided by the friction between both pairs of wheels and the road. 

 
In the sketch we have taken the total friction for the outer pair of wheels 

to be  fo  and for the inner pair to be  fi.  These are not equal, since the 
normal reaction forces  No, Ni  for the outer and inner pair of wheels are 

different.  This is a consequence of the turning moment of the friction 
forces about the centre of mass of the car. 

 

Resolving the forces vertically we have: 
 

MgNN io 
 

   (i) 
and the equation of motion for the car is 

 

RMvff io /2  

(ii) 

 
Let us now consider the turning moments about the centre of mass.  The 

condition for stability is 
 

bNNhff ioio )()( 
 

  (iii) 
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Substituting for )( io ff   from (ii) we find 
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   (iv) 

 
Adding and subtracting equations (i) and (iv) gives: 

 











bR

hv
g

M
No

2

2
 

 

and 
 











bR

hv
g

M
Ni

2

2
. 

 

It can be seen that the normal reaction force on the outer wheels is 
increased, while the normal reaction force on the inner wheels is 

decreased.  This fits with everyday experience (it is very noticeable in a 
car with soft suspension, like the old Citroen 2CV).  The condition for the 

car to be on the point of overturning on the bend is that the normal 
reaction force on the inner wheels vanishes.  From above this condition is 
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hv
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  

 

so the maximum velocity for rounding the bend without overturning the 
car is    

h

bgR
v max  

 
The other possibility is that the adhesion between the wheels and the 

road may not be great enough, and the car would slide out of the bend.  

In this case both  fo  and  fi  would have to reach the limiting values 

oso Nf    and isi Nf  .  Equation (ii) then becomes 

 

RMvMgNNff siosio /)( 2   

 
The maximum velocity to avoid sliding is then 

 

gRv smax  



 

 

Question 7o 
 

A car rounds a bend of radius 80 m at a speed of 50 km h-1.  The car's 

centre of gravity is midway between the wheels and is 0.6 m above the 
ground.  The car’s lateral wheelbase is 1.4m.  Find the value of the 

coefficient of friction necessary to prevent side-slip at this speed.  Show 
that the car will not have overturned. 

 

Solution:  the coefficient of friction to avoid side-slip is 
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The velocity at which the car would overturn is  
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This is more than twice as fast as the actual speed of the car, so we 

conclude the car would not overturn at 50 km h-1. 

 

 

 
7.10  Centroids 
 
We have already encountered the concept of the "centre of mass" of an 

object.  The position of the centre of mass of a set of masses  mi  located 
at points  ri  is given by 

 

𝑟𝐶𝑀   =     𝑚𝑖𝑟𝑖
𝑖

 𝑚𝑖

𝑖

  

or 

 

𝑟𝐶𝑀   =   
1

𝑀
   𝑚𝑖𝑟𝑖

𝑖

 

 
where  M  is the total mass.  For a continuous mass distribution it is often 

convenient to replace the sum by an integral  ( 𝜌𝑟 𝑑𝑉). 

 

Below, we will deal specifically with calculating the centre of mass of 
laminae,  i.e. bodies in the form of flat sheets of uniform density and 

thickness. 
 



 

 

Consider the lamina shown in the diagram.  Suppose we want to find the 

x-coordinate of the centre of mass.  We may take the whole shape as 
made up from elements of area in the form of thin strips perpendicular to 

the x-axis, such as  dAi, at position  xi ,  as shown: 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
The mass of each element is 

ii dAtdm   

 
where    is the density of the material and  t  is the thickness of the 

lamina.  The value of the x-coordinate of the centre of mass is given by  
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We can use the same method to find the y- coordinate of the centre of 

mass.  In this case we take elementary strips normal to the y- axis:  
 

 
 

 

 
 

 
 

 
 

 
It follows then that 
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The centroid and the centre of mass 

 
The centroid of an object is its geometric centre, relating to the way the 

volume (or area in the case of a lamina) is distributed.  If the object has a 
uniform density, then the centre of mass will coincide with the centroid. 

 
 

Use of symmetry to help determine the centroid or com 
 

If a lamina has an axis of symmetry, 
then the centre of mass must lie on 

that axis.  An obvious example is a 
rectangular lamina, as shown in the 

sketch.  This has two symmetry axes 
at right angles to each other, parallel 

to the sides.  If the lamina were 

reflected in the symmetry axes, it  
would map back onto itself.  It follows 

that the centre of mass of a rectangular 
lamina most be where the two symmetry 

axes cross. 
 

In the case of an equilateral triangle, there are three symmetry axes with 
angles of 60 between them.  The centroid of the triangle is G, where the 
symmetry axes cross.  Some simple trigonometry shows that AG = ⅔ AD, 

so the centroid is two-thirds of the way from each apex along the 
perpendicular bisector of the opposite side.  This can be shown to be true 

for any triangle. 
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Centroids of composite laminae 

 
Quite often we come across examples where a lamina can be broken 

down into a number of discrete elements, whose individual centroids are 
easy to find from symmetry.  

 
In this case we can find the centroid of the composite lamina simply by 

weighting the centroids of the individual components by their 
corresponding areas.  Suppose the composite lamina is made up of  N 

individual components whose areas are  Ai  and whose centroids have 
coordinates  xi  and  yi.   

 
Then the centre of mass (or centroid) of the whole has coordinates 
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Question 7p 
 

A circular hole of 50 mm diameter is cut in a circular disc of 120 mm 
diameter, the centre of the hole being 30 mm from the centre of the disc.   

Find the position of the centroid of the remainder of the disc. 
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Solution:  we choose our origin to be the centre of the disc, so that before 

the hole is cut the centroid is at  (0,0).  By symmetry the y-coordinate of 
the centroid will still be at  y = 0  after the hole is cut, since the x-axis is 

still a symmetry axis.   
 

Let the remainder of the disc have area  A1  and the area of the hole be 
A2.  The total area of the disc before the hole is cut is 

 

 
22 7.1130960 mmAtot  . 

 

The area of the hole is
22

2 5.196325 mmA  , so the area of the 

remainder after the hole is cut is 
 

2
21 2.93465.19637.11309 mmAAA tot  . 

 

Let the centroid of the hole be at  mmx 302  , and the centroid of 

remainder be at  comx .   We want to determine  comx . 

 
If we add the piece cut out of the disc, of area  A2, to the remainder we 

have the original disc, whose centroid is at  x = 0.  It follows therefore 
that 
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The centroid of the remainder therefore has coordinates  x = 6.3 mm  and  
y = 0. 

 

 
Question 7q 
 
Find the position of the centroid of the lamina shown:   
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Solution:  this “T” shape is clearly made up of two rectangular laminae, as 

shown below: 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
By symmetry the centroid of the “T” must lie along the vertical centre 

line, 30mm from the left hand edge. 
 

To find the vertical position of the centroid we break it down into the two 
rectangular laminae shown above.  We can measure the positions of the 

centroids from the top edge of the “T”.   The cross-bar has area   A1 = 
6010 mm2 = 600 mm2, and  y1 = 5mm, while the upright has area  A2 

=  4010 mm2 = 400 mm2, and  y2 =  (10+20) mm  =  30 mm. 

 

The total area is (A1+A2) = 1000 mm2.  It follows, therefore, that 
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The centroid of the “T” shape has coordinates (30 mm, -15 mm) with 

respect to an origin at the top left hand corner of the “T”. 
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