
 

Section 4:  Kinematics and 

    Newton’s Laws of Motion 
   

 
Newton’s laws tell us how the motion of an object is related to the forces 

acting on the object.  However we start by considering the motion itself 
and how the distance travelled, speed and time are interrelated. 

 
 

4.1 Motion along a straight line 
 
Constant velocity 

 
Suppose an object moves at a 

constant velocity along the  x  axis 
in the positive  x  direction. 

 
The position-time graph is shown 

opposite.  At successive times t1  
and t2 the positions are x1 and x2.   

The velocity v is then  
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It follows that if the thing has a position  x0  when  t=0, its position at a 
later time  t  is 

vtxx  0  

 
If we define the displacement  s  as the distance travelled from the origin, 

 

0xxs   

and  
vts   

 

 
 

 
The diagram opposite is a graph 

velocity against time.  Here, the  
displacement  s  is equal to the 

area (shaded) under the graph. 
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Constant Acceleration 

 
Suppose an object initially moving 

with a velocity  u, is subject to a 
uniform acceleration  a.   

 
On a velocity-time graph (see  

opposite) the velocity is seen to 
increase linearly with time, the  

acceleration being given by 
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where  v1  and  v2  are the velocities at points in time  t1  and  t2.  It 
follows that we may write the velocity v at a time t as 

 
atuv   

(i) 

 
To find the displacement  s, in other words the distance travelled, we 

calculate the area under the  v-t  graph.  This is equal to the area of the 
lower rectangle  ut  plus the area of the upper triangle 
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so that 
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(ii) 

 
This makes sense, since the average velocity is 
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and 

 

distance   =   average velocity   x   time 
 

 
We now use (i) above to substitute for  v  in (ii) above, giving: 
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It is often very useful to have a relation between the velocities and the 

displacement without involving the time.  Equation (i) above can be 
written in the form 

 

auvt /)(   

 

and that can be used to substitute for  t  in (iii).  This gives 
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leading to 

asuv 222   
(iv) 

 

These four equations, (i) to (iv), are very commonly used to solve 

problems involving linear motion under constant acceleration.  They are 
summarised below: 

 
 

Equations for linear motion under constant acceleration 
 

These relate the quantities s, u, v, a, t, where: 
 

  s  is the displacement (= distance travelled, (x-x0)) 
  u is the initial velocity 

  v is the final velocity 
  a is the acceleration 

  t is the elapsed time. 
 

 

(i)    atuv     

 

(ii)    tvus )(
2
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(iii)    
2
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(iv)    asuv 222   

  



 

Question 4a 
 
Having spotted a police car, a driver brakes from  100  km/h to  80  km/h 

over a distance of  88  metres.  (a) What is the acceleration, and (b) how 
long does it take? 

 
A note on terminology: the units km/h (kilometres per hour) are not 

standard SI units, and the “slash” notation (for division) is something that 

would normally be deprecated in favour of the inverse power (km h-1).  
Furthermore, be aware that “hour” is sometimes abbreviated to hr, not h.  

However, “km/h” is common usage which is unlikely to be misunderstood. 
 

Solution: first express the velocities in metres per second:  
 

100 km/h  =  100/3.6  =  27.77 m s-1 

and  

80 km/h  =  80/3.6  =  22.22 m s-1. 
  

 
(a) Using eq. (iv) above, the acceleration is   
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(b) Now that we know the acceleration, we can use eq. (i) to find the 

 time taken to brake: 
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Question 4b 
 
A train accelerates uniformly from rest.  It reaches  60  km hr -1 in 6 

minutes, after which the speed is kept constant.  Calculate the total time 
taken to travel  6  km. 

 
 

 

Solution: the velocity-time graph 
looks like this: 
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The final velocity of the train must first be expressed in standard units: 

 
60 km hr -1 = (60/3.6) = 16.67 m s-1 

 
Let the time taken to reach the final velocity  v  be  t1, and the time to 

travel the total distance,  6  km, be  t2.  Then, the total distance travelled 
is equal to the area under the v-t graph: 
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But  t1 = 6 minutes = 360 s.  So, when s = 6000 metres, we have  
 

)360(67.1636067.166000 22
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leading to the answer 
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or  9  minutes. 
 

 

Question 4c 
 

A train is slowing down at a steady rate.  It is timed between posts A, B 
and C, spaced  2  km apart: it takes  100  seconds to travel between A 

and B and  150 seconds  to travel between B and C.  Find the deceleration 
of the train and calculate the distance it will travel beyond C before it 

stops.  

 
Solution:  

 
(a) From the v-t diagram, 

 
 tB   tA = 100 seconds 

 
 and 

  
 tC   tB = 150 seconds.   

 
The distance travelled from A to B 

is 2000 metres, so the area under 
the v-t diagram is 

 

𝑠  =    2000  =    ½  𝑣𝐴 + 𝑣𝐴  𝑡𝐵 − 𝑡𝐴    
 

It follows that  

velocity 

time 

vA 

vB 

vC 

tA tB tC tD 



 

 

𝑣𝑎  +   𝑣𝐵   =    2  𝑥  
2000

100
  =    40  𝑚 𝑠−1 

  (i) 
The distance between B and C is also 2000 metres, and 

 

𝑠  =    2000  =    ½  𝑣𝐴 + 𝑣𝐶  𝑡𝐶 − 𝑡𝐵  
 

leading to 

67.26150/20002  CB vv
 
m s-1 

  (ii) 

Subtracting the two equations, (ii)  (i), 
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The deceleration of the train is therefore 
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(b) Now, the distance travelled from A to B is 2000m, so if we use the 
equation 

2
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we have 
2
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1 10005333.01002000  Av  

which gives 

67.22Av m s-1 

 

Finally, we find the total distance travelled from A to the point D where 

the train stops from the equation asuv 222  , with 0v  and Avu  .  

We find 
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So the distance travelled by the train beyond C is  
 

m7.816400067.4816   

 
  



 

Motion in Free-Fall 

 
A particular example of motion under constant acceleration is a body 

falling under gravity, where the acceleration is 
 

a =  g = 9.8 ms-2 

 

The minus sign here relates to the fact that the acceleration is 
downwards, and we normally take upward displacements (distances 

travelled) as positive.  Suppose we drop a brick off the top of a building, 
how far does it fall in successive seconds, and how fast is it travelling? 

We take the initial velocity u = 0, so 2

2
1 gts  and gtv  .  The table 

below lists the values of s and v: 
 

 

t (seconds) s (metres) v(m s-1) 

0 0 0 

1 -4.9 -9.8 

2 -19.6 -19.6 

3 -44.1 -29.4 

4 -78.4 -39.2 

5 -122.5 -49.0 

 
 

Notice that (in magnitude) the velocity increases linearly with time, while 
the distance travelled increases quadratically with time. 

 
We shall return to motion under gravity in a later section where 

projectiles are discussed. 
 

 
Instantaneous Velocity and Acceleration 

 
N.B. This section includes calculus.   

 

In the case of free fall we can guarantee that the acceleration is constant, 
as long as we ignore air resistance.  In the presence of air resistance the 

drag force is approximately proportional to the square of the velocity, and 
eventually becomes practically equal to the downward force due to gravity 

(the weight of the body): at this point there is no net force acting and the 
body drops at a constant velocity, the "terminal velocity".  In this and 

many other situations, the acceleration varies with time.   
 

For example, consider the example of a sports car, driven by a speed 
freak, who drives off down a straight road. The velocity of the car as a 

function of time might look like this graph: 
 



 

 

 
 

 
 

 
 

 
 

 
 

 
   

The velocity of a car as a function of time, eventually reaching a 
maximum speed of 50 m s-1. 

 

 
It starts from zero, then increases to a maximum value speed of 50 m/s 

in, say, 20 seconds.  Notice that the approach to the maximum speed is 
gradual, since it is determined by the drag on the car due to the friction of 

the road and air resistance.  The acceleration of the car is the rate of 
change of the velocity, in other words the gradient of the velocity-time 

plot.  This is shown in the graph below, where it is evident that the 
maximum acceleration occurs at about 5 seconds.   

 
 

 
 

 
 

 

 
  

 
  

 
 

 
 

 
Acceleration as a function of time: the acceleration is equal to the 

gradient of the velocity-time graph. 
 

 
As the car approaches its maximum velocity, the acceleration drops to 

zero (i.e. the car is travelling at a constant speed).  The distance travelled 

is the area under the velocity-time graph (the first graph above).  Notice 
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that after 18 seconds the distance travelled is increasing linearly with 

time, since the velocity is now practically constant.   A graph of the 
distance against time is here: 

  
 

 
 

 
 

 
 

 
 

 
 

 

 
 

Distance travelled by the car: this is equal to the area under the velocity-
time graph. 

 
 

An important concept is that of 
"instantaneous velocity".  In the 

graph opposite, the distance 
travelled is plotted against the 

elapsed time. 
 

Since the x-t curve is non-linear,  
the velocity varies with time. 

Suppose we measure  x  at a 

particular instant  t  and then 
measure it again a small time  t  

later.  At the time  t+t, suppose 

the distance travelled is  x+x.   

 
Then, an estimate of the velocity at time t would be 
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We will get a better approximation to the instantaneous velocity if we 
make t smaller.  In fact, if we take the limit 0t , the ratio tx  /
becomes the gradient or slope of the )(tx graph at the time t.  We 

therefore define the instantaneous velocity as 
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The notation  
dt

dx
  is called the derivative of  x  with respect to  t: it is the 

standard notation in calculus for the limit as  0t  of the ratio  
t

x




, and 

therefore defines the gradient of )(tx . 

 

 
We may use the same approach to 

define the instantaneous value of the 
acceleration of an object.  The sketch 

opposite is a velocity–time graph. 
 

We may approximate the  
instantaneous acceleration a by 

measuring the velocity at time t,  
then measuring it again at a slightly 

later time t+ t: 
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We now improve the approximation by making t smaller, and we may 

define the instantaneous acceleration by taking the limit 
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The symbol 
dt

dv
 represents the gradient of the )(tv  curve. 
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4.2 A little calculus 
 
Although calculus is not essential for this course, it can be helpful and it is 

necessary for higher-level courses in this field.  The following is a brief 
introduction to the key ideas. 

 
Differentiation 
 

For a general function )(xy  the derivative is defined as 

 

𝑑𝑦

𝑑𝑥
  =    lim

𝛥𝑥 →0
 
𝛥𝑦

𝛥𝑥
  

 

and this represents the gradient of the graph of  y  as a function of  x  Let 
us look at some simple examples: 

 

(i) 
2xy     

222 )(2)()( xxxxxxxxy   

 

It follows that 
 

)2()()( xxxxyxxyy  , 

and so 
 

𝑑𝑦

𝑑𝑥
  =    lim

𝛥𝑥 →0
 
𝛥𝑦

𝛥𝑥
   =    2𝑥 

 
 

(ii) A general power, 
naxy   

 
To calculate )( xxy   we use the binomial theorem: 
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so that 
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It follows that 

𝑑𝑦

𝑑𝑥
  =    lim

𝛥𝑥 →0
 
𝛥𝑦

𝛥𝑥
   =    𝑎𝑛𝑥𝑛−1 

 



 

A special case is that the derivative of a constant is zero, i.e. if  

 
Ky   

then 

0
dx

dy
 

 
(iii) Trigonometric functions:  

 
here we quote the results without proof: 

 

 )sin(axAy     )cos(axAa
dx

dy
  

 

 )cos(bxBy     )sin(bxBb
dx

dy
  

 
(iv) The exponential function: 

 
again, without proof: 

 )exp(cxCy     )exp(cxCc
dx

dy
  

 
(v) The natural logarithm: 

 

)ln(axDy     
x

Da
dx

dy 1
  

 

This can be proved easily from the result (iv) for the exponential function, 

using the fact that in general 
 

𝒅𝒚

𝒅𝒙
  =    𝟏 𝒅𝒙

𝒅𝒚
  

  

Integration 

 
Integration is the complementary mathematical operation to 

differentiation.  We can think of integration as calculating the area under 
a graph.   

 
Consider how to estimate area under the graph of  )(xy , shown below, 

between the limits  1xx    and  2xx  .  We can approximate this area by 

dividing it up into  N  narrow strips each of width  x: the area of the strip 



 

numbered  i  would be  yi x, where  yi  is the value of  y(x)  in the centre 

of strip  i.  The area is then given approximately by the sum of the areas 
of all the strips: 

 
 

 xyArea
N

i

i
1

 

 
Clearly we get a better approximation 

if we increase N, the number of strips, 
and make their widths x smaller.  So, 

integral is taken to be the limit where 
N   and  0x : 

 
 

 
 

 𝑦 𝑥 
𝑥2

𝑥1
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𝑁 → ∞,𝛥𝑥  →0

  𝑦𝑖𝛥𝑥

𝑁

𝑖=1

  

 

 
Some particular examples of integrals are given without proof below: 

 

(i) 
A general power: 

naxy 
 

 

 𝑦 𝑥 

𝑥2

𝑥1

𝑑𝑥 =  𝑎𝑥𝑛

𝑥2

𝑥1

𝑑𝑥 =   𝑎 
1

𝑛 + 1
  𝑥𝑛+1 𝑥1

𝑥2   =   
𝑎

𝑛 + 1
  𝑥2

𝑛+1  −   𝑥1
𝑛+1  

 
 

(ii) Trigonometric functions:  
 

 )sin(axAy  :  )cos(
1

)sin( ax
a

AdxaxA   

 )cos(bxBy    )sin(
1

)cos( ax
a

BdxbxB    

 
(iii) The exponential function: 

 

 )exp(cxCy    )exp(
1

)exp( cx
c

CdxcxC   

y 

x x2 x1 
xi xi+x 

yi 



 

 

The first example, (i) above, which includes the limits of the integration,  
x1  and  x2,  is called a definite integral, while the other examples, where 

the limits have been omitted, are indefinite integrals. 
 

Applications of Calculus to Linear Motion 
 

Suppose that the position of a particle moving along the  x  axis is given 
by 

 
2

2
1

0 atutxx  , 

 

then the velocity  v  of the particle is the derivative of the position with 
respect to time: 

 

atutau
dt

dx
v  2

2
1

 

 
and the acceleration  a  is the derivative of the velocity with respect to 

time, or the second derivative of the position: 
 

a
dt

xd

dt

dv
onaccelerati 

2

2

. 

 
Suppose we start with the velocity of the particle, 

 
atuv   

 
then we can find the distance travelled by working out the area under the 

velocity-time graph: this is just the integral of  v(t), with respect to  t: 
 

catutdtatudttvx   
2

2
1)()( . 

 
Notice that when calculating an indefinite integral we should include a 

constant c in the answer.  Any value of the “constant of integration” is 

compatible with the original expression for the velocity, so we can only 
determine the position to within the addition of the constant. We need to 

use extra information to find the value of the constant: for example, if the 
particle is at  x0  when  t=0, then we find  c = x0.  We then have 

 
2

2
1

0 atutxx  . 

 

These results correspond with what was obtained earlier without calculus. 
 



 

 

Question 4d 
 

A particle moves along the  x  axis according to the equation  
 

x = 50 t + 10 t 2. 
 

(a) Calculate the average velocity over the first three seconds. 

(b) Calculate the instantaneous velocity of the particle at t = 3.0 s. 
(c) Calculate the instantaneous acceleration at t = 3.0 s. 

 
Solution: 

 
(a) Firstly, the velocity is 

 

t
dt

dx
v 2050  . 

 

This increases linearly with time, so that  
 

150)0(  smtv    

and 

  
11106050sec)3(  smtv . 

 

The average velocity over the first three seconds is therefore  
 

1

2
1 80)11050(  smvav  

 

(b) 
1110sec)3(  smtv  

 

(c) The acceleration is given by: 
220  sm

dt

dv
a  (constant) 

 
 
 

Question 4e 
 
A particle moves along the x axis with a velocity that changes with time 

according to the equation  
v = 10 + 3 t 2, 

  
where v is in metres per second and t is in seconds.  How far has is 

travelled after a time t= 1s and t= 10s? 
 



 

Solution:  the distance travelled is the area under the v-t graph, or the 

integral of v with respect to t: 
 

𝑥  =     𝑣 𝑡 𝑑𝑡

𝑡0

0

  =      10 + 3𝑡2 𝑑𝑡

𝑡0

0

  =     10𝑡 +  𝑡3 0
𝑡0   =     10𝑡0  +   𝑡0

3  

 
So for t0 = 1 second, x=11 m; for t0 = 10 seconds, x = 1100 m. 

 
 

Question 4f 
 

A ball bearing drops from rest in a long tube filled with syrup.  Its 
acceleration is initially  –g, but because of the viscous drag it decreases 

with time according to: 

 

)/exp( tga   

 

Find its velocity at a time  t  after it is dropped.  What is its terminal 
velocity?   

 
Solution: 

 
Since the acceleration is the derivative of the velocity: 

 

dt

dv
ta )( , 

 

it follows that velocity is the integral of the acceleration (i.e. the area 
underneath a graph of the acceleration against time): 

 

antconsttgdttgdttatv    )/exp())(()/exp()()()(   

 
To find the constant of integration, suppose that at  t=0  the velocity  v  

is zero.  Then 
 

0  =    𝑔𝜏  +    𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
 

so that the constant is equal to  g .  The result is then 

 
)/exp()(  tggtv   

  

Rearranging, we find 
 

)]/exp(1[)(  tgtv  . 



 

  

To find the terminal velocity, we take the limit t  and find that the 

velocity tends to the constant value 

 

gv   

 

The velocity equation may be rewritten using the terminal velocity: 
 

)]/exp(1[)( tvtv    

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
The velocity of a body dropping in a viscous liquid.  The curve has been 

calculated for  g = 9.8 m s-2,   =  2 secs  and  v0 = 0. The terminal 

velocity is  -19.6 m s-1. 
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4.3   Projectiles in two dimensions 
 
 

To investigate the trajectory of a 
projectile we will apply the equations 

of linear motion with constant  
acceleration. 

 

Consider a cannon-ball emerging 
from the muzzle of a cannon with 

a velocity  V .  The barrel of the  
cannon is inclined at an angle  to 

the horizontal.  We take our axes 
as  x  horizontally and  z  vertically, 

as shown in the sketch.  It follows 
that the horizontal component of 

the velocity is 
 

 )cos(VVx   

 
and the vertical component of the velocity is 

 

)sin(VVz  . 

 
We neglect air resistance.  In this example the only force acting on the 

cannon-ball is that due to gravity, which acts vertically downwards.  This 
means that the acceleration of the cannon-ball is 

 

a = g  =  ẑ81.9
 
m s-2. 

 

Here  ẑ   is the unit vector in the  z  direction.   This means that there is 

no component of acceleration in the  x  direction, so the  x-component of 
the velocity remains unaltered.  It follows that the displacement of the 

cannon-ball in the  x-direction is given by: 
 

tVtVx x )cos(  

  (i) 

 
The vertical motion has the uniform acceleration  –g, so the vertical 

displacement of the cannon-ball is given by: 
 

2

2
12

2
1 )sin( tgtVtgtVz z    

(ii) 
 

To find the path taken by the cannon-ball we can take 

V 

 
x 

 z 

Vcos() 

Vsin() 



 

 

)cos(/ Vxt   

 
from (i) above and substitute it into (ii): 

 

)(cos2
)tan(

22

2




V

gx
xz   

(iii) 

 
This trajectory is a parabola.   The graph below shows the trajectories for 

different angles of projection  :  

 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

Trajectories of a projectile showing parabolic paths for several elevation 
angles but the same projection speed  V=140  m s-1.  The dotted curve is 

the curve of safety, which is the envelope of all points that can be 

reached for this value of  V. 
 

 
Time of flight of the projectile 

 
How long does the projectile take before it hits the ground?  In equation 

(ii) above we can put z = 0 and find the roots of the equation: one root is 
t = 0, which is the time of projection, the other root is given by 

 

𝑉 sin 𝜃   =    ½ 𝑔𝑡 
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from which we see that the time of flight of the projectile is  
 

𝑡𝑀𝐴𝑋   =    
2𝑉 sin 𝜃

𝑔
 

 

 
 

Range of the projectile 
 

To find how far the projectile travels from the origin (along the  x-

direction) we put the time of flight into the equation (i) above, which 
describes the x-motion: 

 

𝑥𝑀𝐴𝑋    =     𝑉 cos 𝜃  . 𝑡𝑀𝐴𝑋   =    
2𝑉2  sin 𝜃 cos 𝜃 

𝑔
  =    

𝑉2 sin 2𝜃 

𝑔
 

 

Notice we can also write the range in terms of Vx and Vz: 

 

g

VV
x zx2

max   

 

The maximum possible range for a given projection speed occurs when 
1)2sin(  , namely when  = /4 or 45.  In this case, 

gVx /2
max  . 

 
 

The maximum height of a projectile 

 
Referring to the trajectories in fig. 4.5, it can be seen that the maximum 

height occurs exactly half way along the path, namely at a time 

g

Vt
t

)sin(

2

max 
 . 

 

Inserting this value into equation (ii) gives the maximum height: 
 

2

2
1

max

)sin()sin(
)sin( 










g

V
g

g

V
Vz


  

 

This gives 

g

V
z

2

)(sin 22

max


 . 



 

The maximum possible height for the projectile is when 1)sin(  , 

corresponding to  = /2 or 90, i.e. when the projectile is launched 

vertically upwards.  Then, the maximum possible height is 

 

g

V
z

2

2

max  . 

 

The "curve of safety" 
 

The dotted line in the previous graph is sometimes called the "curve of 
safety".  It is the envelope of the most extreme parts of the trajectory 

that can be reached for a given projection speed  V.  The equation that 
describes the curve of safety is: 

 

2

2

2

22
x

V

g

g

V
z   

 

An object outside the region encompassed by the curve of safety could 
not be struck by the projectile. 

 

 

Question 4g:  the formula for the "curve of safety"   
 
A projectile is launched at a speed  V  at a target placed a distance  d 

away at a height  h  above a horizontal plane.  Show that the projectile 
can hit the target as long as  

 

2

2

2

22
d

V

g

g

V
h  . 

 
Solution: 

 
Suppose the angle at which the projectile is launched is  , then the 

horizontal distance travelled in time  t  is 
  

tVx cos   

    (i) 
and the vertical distance is 

  
2

2
1)sin( tgtVz  

 
    (ii) 

Substituting  t  from (i) : 



 

cosV

x
t   

 

into equation (ii) gives 
 

 2

2

2

sec
2

)tan(
V

gx
xz    

  (iii) 
 

We now use the trigonometrical identity  22 tan1sec  ,  so that (iii) 

becomes a quadratic equation in tan .  We now put in the extreme 

values of x and z, namely x = d and z = h.   Equation (iii) then becomes 

 

gd2

2V2
  1 +  tan2 θ   −    d tan θ   +    h  =    0 

 

 
Rearranging in powers of tan : 

 

0
2

tantan
2 2

2
2

2

2











V

gd
hd

V

gd
    (iv) 

 

Now, for a quadratic equation of the form  02  cbxax , the condition 

that the roots are real is that  acb 42  .   Applying this condition to 

equation (iv) gives: 

 











2

2

2

2
2

22
4

V

gd
h

V

gd
d . 

 

Simplifying, this leads to the required result 
 

2

22

22 V

gd

g

V
h  . 

 
  



 

Question 4h 
 

The baseline of a tennis court is 11.5 m from the net, which is  
90 cm  high.  The server strikes the ball at a height of 2.4 m above the 

ground with its initial velocity horizontal.  
 

(a) What is the minimum velocity of serve that will allow the ball to clear 
the net?  For the service to be good the ball has to strike the ground, at 

the most, at 17.5 m from the baseline.   

 
(b) What is the maximum velocity of serve for the ball to be “in”, 

assuming its initial velocity is horizontal?  Will this serve clear the net? 
 

Solution: 
 

(a) To clear the net the ball must fall less than 1.5 m in the time interval t 

taken for the ball to reach the net.  Using 
2

2
1 gts  , this gives 

  

s
g

s
t 553.0

8.9

5.122



  

 
In this time the ball must travel a distance of 11.5 m horizontally, giving 

a velocity 
18.20533.0/5.11  smv . 

 
 

(b) The time taken for the ball to hit the ground is 
 

st 7.08.9/4.22   

  

The maximum velocity is therefore 
1257.0/5.17  smv .  In this case the 

ball will reach the net in  0.46  seconds and has fallen a distance  1.04 m, 
so it will clear the net by  46 cm. 

 
The maximum velocity of 25  m s-1 seems rather slow compared to the 

serving speeds of ~ 50  m s-1 usual in top-class tennis.  This suggests 
that the angle of serve should be below the horizontal for higher-velocity 

serves.  
 

 

  



 

4.4   Rotational motion 
 
 

  
Consider a cylindrical drum of radius  r 

around which is wrapped a cord. 
Suppose the end of the cord is pulled 

through a distance  s, as in the  

diagram. 
 

The drum rotates through an angle  , 

such that the arc subtended at the 

circumference is equal to  s, and rs  . 

 

This follows from the definition of 
an angle in radians: 

 

       
r

s

circleofradius

subtendedarc
  . 

 

Now suppose that the cord is being pulled at a constant rate.  In this case 
the end of the cord would move at a constant velocity  v  and the drum 

would rotate at a constant angular velocity  .  The angular displacement 

of the drum would be  t  .  The angular velocity    is measured in 

units of radians per second.  It is common for rotational speed of a drum 
or wheel to be reported as, say, N revolutions per minute (rpm).  Since 

one revolution corresponds to 2 radians, it follows that the conversion 

from  rpm  to radians per second is: 
 

𝜔  =    
2𝜋𝑁

60
      𝑟𝑎𝑑𝑖𝑎𝑛 𝑠−1 

 
 

The relation between linear and angular velocity 
 

Starting from  rs    we can derive the relation between linear and 

angular velocities.  The linear velocity  v  at which the end of the cord 

moves can be calculated from the linear displacement in a certain time: 
 

t

ss
v 12   

 
We can now relate the linear displacement to the angular displacement: 

  

r 
 

s 

s 



 




r
t

r
t

rr

t

ss
v 








 121212 . 

 

 
This result also follows directly from  rs    by differentiating both sides 

with respect to time: 
 

dt

d
r

dt

ds 
 , 

 
giving 

rv  . 

 

 
Angular acceleration 

 

Suppose that the cord is pulled with 
a uniform linear acceleration  a, so that 

the end of the cord has a velocity 
 

  atuv   
 

where  u  is its 
initial velocity, and its linear 

displacement is 
 

  
2

2
1 tatus   

 
It follows that the angular velocity will increase linearly with time, from a 

value  
r

u
1  to a value  

r

v
2 . 

 
We may therefore define the angular acceleration    as 

 

t
onacceleratiangular 12 




 , 

so that 

t  12  
   (i) 

 

It follows that 

r

a

t

uv

r





1
 , 

 

2 

t 

1 

0 t 

 



 

i.e. the relation between the linear acceleration  a  and the angular 

acceleration    is 

 
ra   

 

This also follows directly by differentiating both sides of the relation 
rv   with respect to time: 

 

     
dt

d
r

dt

dv 
 . 

 

Since  
dt

d
    it follows that the angular displacement is the area under 

a plot of    against time  t.  

 

For a constant angular acceleration it follows that the angular 
displacement is given by the area under a graph (such as the one above) 

of  ω  as a function of time.  We get 

 

𝜃   =     𝜔1𝑡  +   ½  𝜔2  −   𝜔1  𝑡 
so that  
 

 
 

 

  (ii) 
 

We may also write, from the definition of angular acceleration: 
 

t  12  

 
Substituting this into the result for the area, we have 

 
2

2
1

1 tt     

   (iii) 

 

Finally from (ii) we relate the time to the displacement: 
12

2






t  and 

eliminate  t  in the definition of the angular acceleration so as to get 

 

     
12

12

2







 t . 

 

which can be rearranged to give 

𝜃  =    ½  𝜔2  +   𝜔1  𝑡 



 

 

 22
1

2
2   

   (iv) 

 
Each of these equations is a counterpart to one of the equations for linear 

motion.  Both sets of equations are summarised below: 
 

 
Summary of equations for linear and rotational motion 
 

 
  Linear Motion   Rotational Motion 

 

(i)  atuv        t  12  

 
(ii)  tvus )(

2
1      𝜃 =  ½  𝜔1 + 𝜔2  𝑡 

 

(iii)  2

2
1 atuts      

2

2
1

1 tt    

 

(iv)  asuv 222       22
1

2
2   

 

 

 

Question 4i 
 

The speed of an electric motor increases linearly from zero to  500  rpm in  

10  s.  Find the angular acceleration and the total number of revolutions 
made in the  10 s. 

 
Solution: 

1=0, 2= 5002/60 radians s-1 

so that  
 

236.5
1060

250012 











t
 radians s-1 

 

𝜃  =    ½  𝜔1 + 𝜔2  𝑡  =    
500 ×   2𝜋

2  ×   60
  ×   10  =    262 𝑟𝑎𝑑𝑖𝑎𝑛𝑠  

=    41.7 𝑟𝑒𝑣𝑠 
 
 

 
 

  



 

Rolling motion 

 
When a wheel rolls steadily along a surface at a constant rate, the centre 

of the wheel travels with a fixed linear velocity  v  but a point on the rim 
has a more complex motion, being a combination of rotation about the 

centre and translation, as shown here: 
 

 
 

 
 

 
 

 
 

 

 
 

(a) Pure rotation  (b) Pure translation  (c) Rolling motion 
  

Rolling motion as a combination of pure rotational motion and pure 
translational motion. Note that in (c) the point P at which the wheel is in 

contact with the ground is stationary.  This is a requirement for rolling. 
 

The condition for rolling is that there should be no relative motion 
between the point of the wheel in contact with the surface and the surface 

itself: if this condition is not met the wheel will slide or skid across the 
surface.  It follows that the point P in (c) above is instantaneously 

stationary.  Its forward translational velocity  v, due to the forward 
motion of the whole wheel (as in (b)) must be cancelled exactly by the 

backward velocity due to the rotation of the wheel (as in (a)).  This 

means that the velocity of the wheel's rim relative to its centre must be 
exactly equal to the linear forward velocity v of the centre of the wheel.  

This tells us that the relation between the forward velocity of the wheel 
and its angular velocity of rotation is  rv  . 

 
If we combine the instantaneous velocities due to rotation with the 

forward translational velocity for each point on the wheel, the motion 
appears to be equivalent to an instantaneous rotation about the point of 

the wheel in contact with the surface, as shown in the following diagram. 
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The combination of rotation and translation is equivalent to an 

instantaneous rotation about the point P, at which the wheel is in contact 
with the road. 

 
 

 

4.5   Newton’s Laws of Motion 
 

Newton’s laws of motion have already been used implicitly in the 
definition of force and in the context of static equilibrium. 

 
Newton’s First Law:  a body will remain at rest or continue to move at a 

constant velocity unless acted on by an external force. 

 
This is equivalent to saying that 

 
if no net force acts on a body, then the body’s velocity cannot change: in 

other words, it cannot accelerate.   
 

It follows that in static equilibrium, where a system is either stationary or 
is moving with a constant velocity, the net force is zero. 

 
Newton’s Second Law: the rate of change of the momentum of a body 

is equal to the net force acting on the body and it takes place in the 
direction of the net force. 

 
The standard symbol for momentum is  p  (= mv).  Suppose the initial 

momentum of an object of mass  m is  p1  (= mv1) and it is then 

subjected to a constant force  F  for a time  t.  Then, its final momentum 
will be  p2  (=  mv2) and 

 

𝐹   =    
𝑝2  =   𝑝1

𝑡
  =    

𝑚 𝑣2 −  𝑣1 

𝑡
  =    𝑚𝑎 

 

where  a  is the acceleration of the body.  Note that this is a vector 
equation: the direction of the acceleration is parallel to the direction of 

P 
 



 

the applied force.  This result gives an alternative statement of Newton’s 

second law: 
 

When a net force F acts on a body it produces an acceleration  a  equal to 
the ratio of the force to the mass of the body; the direction of the 

acceleration is parallel to the direction of the net force: 
 

𝐹   =    𝑚𝑎 
 

To emphasise the vector nature of Newton’s second law, consider the 
case where the applied force is at an angle to the initial momentum of the 

body: 
 

 

 
 

 
 

 
 

 
 

 
The vector diagram on the right shows that p, the change in momentum, 

is parallel to the direction of application of the force F. 
 

We have already seen that Newton’s second law defines the unit of force, 
the newton, as the force which acting on a mass of  1  kilogram, produces 

an acceleration of  1  m s-2. 
 

Newton’s Third Law: When two bodies interact, the forces on the bodies 

from each other are always equal in magnitude and opposite in direction. 
 

We have used this law implicitly when 
discussing, for example, the normal 

reaction force between a block and the 
table on which the block rests. 

 
The block acts on the table with a 

force equal to its weight W.  By 
Newton’s third law the table acts 

back on the block with the reaction 
force N, equal and opposite to the 

weight: 
 

  N =  W   

 

F 

p1 

m 

p1 
p2  

p 

N 

W 



 

It follows that the net force vanishes: 

 
N + W  =  0 

 
so that the block is in static equilibrium. 

 
Similarly, if we pull on a rope  

attached to a large mass, the tension 
in the rope transmits a force T to 

the mass.  This is equal and opposite 
to the force we exert on the end of 

the rope.   
 

 
Inertial and Gravitational Mass 

 

We routinely find out the mass of an object by measuring its weight, i.e. 
by measuring the magnitude of the gravitational force  mg  acting on it.  

This can be called the “gravitational mass” of the object.  But we could 
also measure the mass of an object without reference to gravitation by 

measuring the acceleration given to it by some other kind of force (e.g. 
by a motor pulling it horizontally).  This can be called the “inertial mass”.  

In Newtonian mechanics there is no a priori reason why the gravitational 
mass and the inertial mass should be the same, but in practice they 

appear to be identical.  A Hungarian physicist, Eötvös, carried out very 
precise measurements that showed no difference between inertial and 

gravitational mass to one part in 107.  Einstein concluded that this cannot 
be a coincidence, and so he took it that there must be a fundamental 

equivalence between inertial and gravitational masses and he used this 
principle as one of the foundations of his theory of general relativity. 

 

 
Applications of Newton’s Laws of Motion 

 

Question 4j 
 
A car of mass 1 tonne accelerates from rest to 100 m s-1 in 20 s.  If the 

resistance to motion is 100 N, determine the traction force required. 

 
 

  
 
 

T T 

F 

f 



 

Solution: 

 
Let the traction force be F and the resistive force be f.  The net force 

acting on the car is then F f.  The acceleration of the car is 
2520/100/)(  smtuva .   The equation of motion for the car is  

amfF


 , so that NmafF 500051000|| 


.  

 

Since  Nf 100 , it follows that the traction force  F = 5100 N. 

 

 

Question 4k 
 
Coal wagons are hauled along a level track by a winch.  The total mass of 

the wagons is  20  tonnes.  If the resistance to motion is  1500 N  per 

tonne, calculate the tension in the winch cable when  
 

(a) the wagons are accelerating at 5 m s-2, and  
 

(b) the wagons are decelerating at 1.25 m s-2.   
 

Solution: 
 

Let T be the tension in the cable and f be the frictional force, whose 
magnitude is  1500  20  =  30000 N.  The net force on the wagons will 

then be  Tf  and the equation of motion is  MafT  ||


.  It follows that  

fMaT  . 

 

(a) kNsmkgfMaT 1301030)(5)(1020 323  
. 

 

(b) kNkNsmkgT 5)2530(1030))(25.1()(1020 323  
 

 

 

Question 4l 
 

A mass of 400 kg is raised vertically from rest by a winch 
at a constant acceleration.  It attains a velocity of  6  m s-1  

after 4 seconds.  What is the tension in the winch cable? 
 

Solution:  the net upward force on the mass is MgT  , 

so the equation of motion is MaMgT  .  The acceleration 

of the mass is 25.14/6/)(  smtuva , so the tension 

in the cable is   NgaMT 4520)8.95.1(400)(  . 

  

M 

Mg 

T 



 

Question 4m 
 
A passenger in a lift stands on bathroom scales. 

The passenger’s mass is 72.2 kg. What is the 
reading on the scales (calibrated in newtons) if:  

 
(a) the lift is stationary,  

 

(b) the lift moves upwards at a constant speed 
      of 1 m s-1,  

 
(c) the lift accelerates upwards at 3.2  m s-1,  

 
(d) the lift accelerates downwards at 3.2  m s-1? 

 
Solution: 

 
(a) When the lift is stationary the passenger exerts a force on the 

scales equal to his weight  Mg.  The normal reaction force of the 
scales on the passenger is equal and opposite  to the weight, so its 

magnitude is  N = Mg.  This normal reaction force is created in the 
scales by compression of a spring: it follows that the reading on the 

scale is equal to N.  The reading is therefore 72.2  9.8  =  707.6 N. 

 

(b) When the lift is moving at constant speed, there is no additional 

acceleration on the passenger or the scales, so we still have  N = 
Mg.  The reading on the scales is still  707.6 N. 

 
(c) For the passenger to be accelerated upwards, she must be 

subjected to a net upward force.  This can only come from the 
normal reaction force.  The net upward force acting on the 

passenger is   N  Mg . This produces an upward acceleration  a. 

The equation of motion for the passenger is then 

 

     aMgMN


  

 

 so the magnitude of the reaction force, and therefore the reading on 
 the scale, is 

 
NagMN 6.938)2.38.9(2.72)(  . 

 

(d) When the acceleration is downwards, a = -3.2  m s-2, the reaction 

         force and hence the scale reading is:  
 

NagMN 5.476)2.38.9(2.72)(  . 

 

W=Mg 

N 

scales 



 

 

Question 4n 
 

A truck of mass  1 tonne  is held 
stationary on a plane inclined at 

a gradient  1:30  to the horizontal. 
If the truck is released, calculate 

its acceleration and the distance 

it travels in  20  seconds.  Ignore 
friction. 

 
Solution: 

 
The only forces acting are the 

weight  W  = Mg   acting 
vertically downwards and  

the normal reaction force  N,  
which is perpendicular to the  

plane.  N is balanced by the 
component of the weight normal to the plane: 

 
cosWN   . 

 

In the absence of friction the net force acting down the slope is the  
component of the weight, so the equation of motion of the truck is 

 
MaMgW   sinsin . 

 
The acceleration of the truck is therefore  

 
23267.0)30/1(8.9sin  msga   

 

Starting from rest the distance travelled is 
 

mtas 33.65)20(3267.05.0 22

2
1  . 

  

W 

Wsin 

Wcos 

N 

 
 



 

 

Question 4o 
 

A truck of mass  1.6  tonnes 
accelerates up an incline with 

a gradient of  1:40  under a 
traction force of  3 kN.  If the 

resistance to motion is  200 N 

per tonne calculate the 
acceleration of the truck. 

 
Solution:  let F be the traction force and f the frictional force.  The other 

forces in the problem are the weight of the truck W and the normal  
reaction force N as illustrated. 

 
Since the acceleration is parallel to the slope we need the net force acting 

in this direction.  This is the sum of the traction force F up the slope, the 
friction force f down the slope and the component of the weight, W.sin(), 

also down the slope.   The equation of motion for the truck is therefore: 
 

MaWfF  sin   , 

 

so the acceleration is: 
 

2

3
43.1245.0675.1

40

1
8.9

106.1

6.12003000sin 






 sm

M

MgfF
a


 

 

 

Question 4p 
 
A mass of  15 kg  rests on 
a smooth table.  This mass 

is connected by a light string, 
which passes over a light 

frictionless pulley, to another 
mass of  10 kg  that hangs 

freely.  Calculate the tension 

in the string and the acceleration 
of the system.  

 
Solution:  the weight of the mass on the table  Mg 

is balanced by the perpendicular reaction force  N  
as shown in the diagram.  The only other force acting 

on M is the tension in the string,  T.  The equation of 
motion for the mass on the table is therefore: 

 

Mg 

T 

T 

T 

mg 

N 

N 

W 
Wsin 

Wcos 

 
 

f 

F 



 

MaT   
   (i) 

 
where  a  is the acceleration.  Obviously the acceleration of both masses 

must be the same, since they are connected by an inextensible string. 
 

The net force on the other mass is its weight  mg  minus the tension in 
the string T, so the equation of motion of this mass is 

 

maTmg   

 (ii) 

Substituting for  T  from (i) gives:  
 

maMamg   

 
Rearranging we find the acceleration of both masses is 

 

292.3
1510

8.910 






 smg

Mm

m
a . 

 

The tension in the string, from (i), is: NMaT 8.5892.315  . 

 

 

Question 4q 
 

Two blocks, of masses  15 kg  and  10 kg  
are connected together by a light string 

which passes over a light frictionless pulley 
as illustrated.  Calculate the acceleration 

of the system and the tension in the string. 
 

Solution:  the tension in the string  T  is the 

same on both sides since there is no friction 
in the pulley. Assume that the mass  M 

accelerates downward with acceleration  a. 
The equation of motion for the mass  M  is 

then 
           MaTMg    

      (i) 

 
The other mass will accelerate upwards at the same rate, so its 

equation of motion is: 
mamgT 

 
   (ii) 

 
Adding equations (i) and (ii) together, we find 

T 
T 

Mg mg 



 

amMgmM )()(   

 

so the acceleration of the system is: 
 

296.18.9
1015

1015

)(

)( 








 smg

mM

mM
a . 

 
The tension in the string is given by equation (i): 

 
NagMT 6.117)96.18.9(15)(   

 

 

Question 4r 
 

The record for the longest skid mark on a public road was set by a Jaguar 
on the M1 in 1960.  It was measured at  290  metres.  Assuming the 

coefficient of kinetic friction between the wheels and the road   k = 0.6 

and that the deceleration was constant, how fast was the car travelling 

when its wheels became locked? 
 

 
 

 
 

 

 
 

 
 

Solution:  assuming that the clutch is depressed so the engine is 

disengaged, the only force affecting the horizontal motion of the car is the 
friction force f.  The other forces are the weight of the car Mg and the 

normal reaction force N, which balance each other: 
 

MgN   

 (i) 
The friction force is related to the normal reaction force via: 

 

MgNf kk  
 

(ii) 

so the equation of motion of the car is: 
 

Maf   

(iii) 

N 

Mg 

f 



 

 

The minus sign here arises since the direction of the force is opposite to 
the direction of motion of the car.  From (ii) the equation of motion 

becomes 

 MaMgf k   . 

 

The acceleration of the car is then 
288.58.96.0  smga k . 

 

To find the initial velocity we use the formula  asuv 222  .  Since the 

final velocity v = 0, we have 

 

 
212 )(4.3410290)88.5(22  smasu  

 

The initial velocity was therefore 
 

14.584.3410  smu    or  hourkm /210 . 

 

Note that the length of the skid is proportional to the square of the 
velocity – clearly something to remember when estimating stopping 

distances. 
  

 
Impulse 

 
In all the preceding examples we have used the  maF    form of 

Newton’s second law.   Let us consider the other form, where the force is 
equated to the rate of change of momentum.  In the notation of 

differential calculus we may write: 
 

𝐹   =    
𝑑𝑝

𝑑𝑡
  =    

𝑑 𝑚𝑣 

𝑑𝑡
 

 
It follows that the integral of the force (with respect to time) is the 

change in the momentum: 
 

 𝐹

𝑡2

𝑡1

𝑑𝑡  =    𝑝 𝑡2  −  𝑝 𝑡1   =    𝑚𝑣2  −   𝑚𝑣1  

 

If a constant force  F  acts for a time  t, the integral is just  Ft.  This is 

called the impulse.  We can determine an impulse by measuring the 

change in the momentum of a body: 
 

   Impulse = force time = change in momentum    



 

Question 4s 
 
The force on a  10 kg  object increases linearly from zero to  50 N  in 

4 seconds.  What is the object’s final speed if it starts from rest? 
 

Solution:  if the mass  m  starts from rest and reaches a speed  vf  the 
change in its momentum is  mvf .  The force increases linearly with time: 

so put  

tbtF )(  

Then, since  F = 50 N  after  4  seconds we have  
1)4/50(  sNb .  From 

the definition of impulse: 
 

𝑚𝑣𝑓 =  𝐹 𝑡 𝑑𝑡

4

0

=  𝑏𝑡𝑑𝑡

4

0

= ½  𝑏𝑡2 0
4 = ½  

50

4
𝑡2 

0

4

=  
50 × 16

2 ×  4
  = 100 𝑘𝑔 𝑚 𝑠−1 

 

The final speed is then:  

1

1

10
10

100 



 sm
kg

smkg
v f . 

 

 

The impulse may be regarded as 
the area under the graph of  F  

against  t : in this example, where 
F = bt,  the area is the area of the 

lower triangle in the diagram opposite. 
So, 

 Impulse = 
2

2
1

2
1 tbttb   

 
 

Question 4t 
 
A baseball of mass  0.15 kg, travelling at  40  m s-1, is struck squarely by 

a bat, causing the baseball to rebound in the opposite direction at a speed 
of  60  m s-1.  The time of contact between the ball and bat is  1.3  10-3 

seconds.  Calculate the average force exerted by the ball on the bat.   
 

First calculate p, the change in momentum of the ball:    

 

𝛥𝑝   =    𝑝𝑓 −  𝑝𝑖   =    𝑚 𝑣𝑓  −   𝑣𝑖  

It follows that 
 

𝛥𝑝  =    0.15  ×   −60 − 40   =    15  𝑘𝑔 𝑚 𝑠−1 
 

  

time 

F 

t 

bt 



 

Since 

ptF   

the average force is 
 

N
s

smkg

t

p
Favg

4

3

1

1015.1
)(103.1

)(15














 

 
 

Newton’s Third Law and the Conservation of Momentum 
 

Suppose two objects interact or collide with each other but are otherwise 
isolated.  The only force on each body is due to its interaction with the 

other.  Newton’s third law says that the force on object 1 due to object 2 
is equal and opposite to the force on object 2 due to object 1, i.e. 

 

𝐹12   =   − 𝐹21 
 

Now according to the second law  

𝐹12   =    
𝑑 𝑚1𝑣1 

𝑑𝑡
 

and 

𝐹21   =    
𝑑 𝑚2𝑣2 

𝑑𝑡
 

 

It follows that 

𝑑 𝑚1𝑣1 

𝑑𝑡
   =  −  

𝑑 𝑚2𝑣2 

𝑑𝑡
 

 

or, equivalently, 
𝑑

𝑑𝑡
  𝑚1𝑣1   +    𝑚2𝑣2     =    0 

 

This says that the rate of change of the total momentum is zero, i.e. the 
total momentum is constant: 

 

𝑚1𝑣1   +    𝑚2𝑣2   =    𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
 

This result can be generalised to a system of many interacting objects.  
The principle oif the conservation of momentum applies to all types of 

interactions and it has the status of a fundamental principle of physics: 

 

The total linear momentum of an isolated system is conserved 
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