
Page 1 of 34

Document title: JISC Final Report

Last updated: April 2007

Project Information

Project Acronym HiH (Hydrangea in Hull)

Project Title Hydrangea: letting the repository flower

Start Date 01/02/2011 End Date 30/09/2011

Lead Institution The University of Hull

Project Director Chris Awre, Head of Information Management

Project Manager &

contact details

Richard Green, Independent consultant

r.green@hull.ac.uk

Partner Institutions

Project Web URL http://hydrangeainhull.wordpress.com/

Programme Name (and

number)

Repositories take-up and embedding (15/10)

Programme Manager Balviar Notay

Document Name

Document Title Project Final Report

Reporting Period

Author(s) & project role Chris Awre, Project Director

Richard Green, Project Manager

Date 31/10/11 Filename HiHFinalReport-v10.pdf

URL

Access Project and JISC internal General dissemination

Document History

Version Date Comments

1.0 28/11/11 Submitted to JISC and JISCrte coordinator

Project Acronym: HiH

Version: Final Report v1.0

Contact: r.green@hull.ac.uk

Date: November 2011

Page 2 of 34

Hydra in Hull

Hydra in Hull Final Report

November 2011

Project Acronym: HiH

Version: Final Report v1.0

Contact: r.green@hull.ac.uk

Date: November 2011

Page 3 of 34

The Hydra in Hull Project

Project Director: Chris Awre (c.awre@hull.ac.uk)
Project Manager: Richard Green (r.green@hull.ac.uk)
Lead software developer: Simon Lamb
Usability and testing coordinator: Diane Leeson

The Hydra in Hull Project was undertaken by Library and Learning Innovation (LLI), with support from

the Information and Communications Technology Department (ICTD), at the University of Hull. It

was funded by the JISC Information Environment Programme ‘Repositories take-up and embedding’

strand.

This material is made available under a Creative Commons Licence: Attribution-Noncommercial-

Share Alike 2.0 UK: England and Wales. See: http://creativecommons.org/licenses/by-nc-sa/2.0/uk

Project Acronym: HiH

Version: Final Report v1.0

Contact: r.green@hull.ac.uk

Date: November 2011

Page 4 of 34

Contents

Acknowledgements ... 5

Executive Summary ... 6

Background ... 8

Aims and Objectives .. 10

Methodology ... 12

Implementation .. 13

Infrastructure design ... 13

Digital object design .. 14

Software implementation ... 16

Enhancements... 17

Digital object conversion .. 18

Embedding .. 19

Outputs and Results .. 19

For the academic end-user ... 19

For repository contributors ... 24

Outcomes .. 31

Conclusions ... 32

Implications ... 33

Recommendations .. 33

Project Acronym: HiH

Version: Final Report v1.0

Contact: r.green@hull.ac.uk

Date: November 2011

Page 5 of 34

Acknowledgements
The project team gratefully acknowledges the support of the JISC Information Environment

Programme in funding this project. We are also grateful to the partners in the Hydra Project (at the

University of Hull, Stanford University and the University of Virginia) for their contributions to the

project especially in the realm of Fedora repository content modelling and to the staff at MediaShelf

LLC who provided professional advice and training.

Our thanks, too, to the staff and students of the University who took part in testing the project

outputs.

Project Acronym: HiH

Version: Final Report v1.0

Contact: r.green@hull.ac.uk

Date: November 2011

Page 6 of 34

Executive Summary
The Hydra in Hull Project set out to take software code developed for the Hydra Project’s

‘Hydrangea’ demonstrator package and use it as the basis for a much-improved digital repository

interface at the University of Hull. In undertaking the work, we wanted to document and feed back

to the community the experiences of such implementation, particularly in regard to its use of Ruby

on Rails and the use of Hydra content models. It was our intention that, alongside this development

work, we would work with our local colleagues to help embed the new ideas and approaches that it

might require. In addition, we wanted to feed back our development work to the Hydra community

world-wide and to contribute ideas and code for the implementation of future Hydra ‘heads’,

thereby hopefully encouraging wider take-up of the Hydra model and associated technology.

Our approach to the project followed a pattern that we have used successfully in past JISC-funded

projects; one which places the users at the centre of technical development so that the work carried

out is actually relevant to their needs. This was not a ‘clean slate’ project: the University has had a

digital repository since 2008. Thus, a further consideration was the need to manage a gentle

transition of user experience from the old to the new. In designing and developing code for the new

system we tried a number of techniques that were new to members of the team involving self-

testing code and the use of a continuous integration server that would run these checks on each

new build of code.

As the project got under way, it quickly became clear that a number of the approaches we had

described in out Project Plan were not going to work out well in practice; it transpired that we

needed to rethink our approaches both to design and implementation. In doing so, we took a rather

different path through our work than the one we had intended but, nevertheless, achieved most of

our goals within the project’s eight month time frame.

At the end of the project we have a working, Hydra-driven user interface for those wishing to

browse the repository and download content (hydra.hull.ac.uk); the content that they are allowed to

discover and download is limited by multi-level security. Behind the scenes, the interfaces for

creating and editing the repository content are not yet so well developed, partly due to an

unforeseen absence of our developer at a critical time, but these will be completed post-project.

These create and edit interfaces introduce an element of workflow that was missing in our old

system, namely that of putting potential new digital objects through a quality assurance stage.

In undertaking this work we have extended and enhanced Hydra’s guidance for designing digital

objects within a repository and have contributed a number of significant improvements and

enhancements to the Hydra code. We find ourselves in a good position to offer advice and guidance

to others who might consider the use of Hydra as a repository solution. Locally, we have involved

users and colleagues in the development work; our end users seem to have taken to the new

interface without significant problems and content managers are keen to have access to a fully

functional create and edit implementation as soon as possible.

Project Acronym: HiH

Version: Final Report v1.0

Contact: r.green@hull.ac.uk

Date: November 2011

Page 7 of 34

Overall, we are pleased with the way this project has gone and hope that others can learn from our

experiences, documented here, and will want to implement their own Hydra heads in order to

exploit this powerful technology solution.

Project Acronym: HiH

Version: Final Report v1.0

Contact: r.green@hull.ac.uk

Date: November 2011

Page 8 of 34

Background
“If you want to go fast, go alone. If you want to go far, go together” African proverb

The Hydra project1 is a collaboration initiated in 2008 by Fedora Commons, now part of DuraSpace,2

to investigate and work towards a reusable framework for multipurpose, multifunction, multi-

institutional repository-enabled solutions. It is based on two fundamental assumptions:

 No single institution can resource the development of a full range of digital content
management solutions on its own,

o …yet each needs the flexibility to tailor solutions to local demands and workflows.

 No single system can provide the full range of repository-based solutions for a given
institution’s needs,

o …yet sustainable solutions require a common repository infrastructure

The founder partners in the project were Stanford University, the University of Virginia and the

University of Hull. The purpose of coming together was in recognition specifically of the first of

these assumptions, and realising that we were better placed working together on how to address

our digital content management needs rather than trying to do this alone. From the beginning a key

aim was to enable others to join the open source Hydra project as and when they wished, and to

establish a framework for sustaining the community as much as any technical outputs that may

emerge.

The common technical link between the founding Hydra partners is their use of Fedora as the

repository infrastructure.3 The Fedora repository architecture allows for highly flexible management

of many types of digital content. Whilst acknowledging this real strength, a key issue for Fedora has

been the lack of a regular user interface, with different repository implementations frequently

developing them locally (a flexible strength of its own, but one that has sometimes prevented

adoption due to the development effort required). Hydra set out to develop a model that would

enable the building of easy to use interfaces and workflows over a sound technical architecture, with

the scalable ability to apply this to different content types and use cases as required: the concept of

different Hydra heads to the common underlying repository, the Hydra body.

Some of the use cases highlighted during the project thus far are as follows:

 ETD management: a single PDF with possible auxiliary files

 Digitisation workflow: potentially hundreds of files, of different types

 Open access research outputs: single PDFs with self-deposit

 Dataset management: a variety of datasets of different types and sizes

 Image/video management: accommodating various formats of the same content

 Digital archives: multiple content types with specific arrangement requirements

 Institutional repository: multiple content types from different sources

1 Hydra project, https://wiki.duraspace.org/display/hydra/The+Hydra+Project
2 DuraSpace, http://www.duraspace.org/
3 NB. This is not an absolute requirement. Others are now looking at implementing Hydra over other environments,
particularly curation micro-services.

https://wiki.duraspace.org/display/hydra/The+Hydra+Project
http://www.duraspace.org/

Project Acronym: HiH

Version: Final Report v1.0

Contact: r.green@hull.ac.uk

Date: November 2011

Page 9 of 34

The basis of the Hydra project has not, though, been technical development, but a focus on how the

repository could be used to address these multiple use cases in a way that allowed for software

implementation in different ways. As such, a full definition of a Hydra head is the use case plus the

software stack used to implement this. At the heart of Hydra is the way that content and metadata

is structured within the repository. Fedora’s digital object model4 allows great flexibility in how this

can be achieved, although such modelling principles could be applied in other systems. A

temptation is to be very detailed in order to provide a strong structure for the repository. Whilst

recognising that individual repositories may wish to apply this detail, Hydra has adopted a simpler

approach that seeks to allow different types of content to be modelled using common building

blocks. This has provided the basis from which others can develop.

Hull’s involvement in Hydra stems from work carried out through the JISC-funded RepoMMan5 and

REMAP6 projects, which sought to enable upstream interaction with a repository through the use of

workflow. Tools to manage deposit into a Fedora repository came out of this work, and we also

made use of a user interface development from Macquarie University in Australia, Muradora, when

we launched in October 2008. Development of this interface has now ceased, highlighting a danger

of a community failing to be built around a very good piece of initial software development. From

this experience and our project work came recognition that the best way to sustain the interfaces

we need was to work with others. Hydra seeks to address this by working together to enable the full

CRUD (create, read, update, delete) set of interfaces and interactions with the repository based on

the firm modelling of content, offering the ability to replace multiple user interfaces with one

integrated one.

Notwithstanding this primary user interface onto the repository, the work carried out in the JISC-

funded CLIF project,7 on the integration of Fedora with SharePoint and Sakai, was taken forward

using the same Hydra modelling principles; these developments can be considered as separate

Hydra heads – different views and points of access onto a common repository. Closely related to

this is our current adoption of the Converis research information system8 and its integration with the

repository.

It is one thing to model content in a sustainable and scalable way. It is necessary to show how this

can be implemented, though, to demonstrate its value. The Hydra project, specifically Stanford in

conjunction with MediaShelf LLC,9 thus developed a Ruby on Rails-based implementation,

Hydrangea,10 that encapsulated the modelling principles and enabled repository interaction for

institutional repository use, with particular emphasis on open access articles and datasets. Whilst

4 See also DuraSpace wiki page on Fedora’s digital object model,
https://wiki.duraspace.org/display/FCR30/Fedora+Digital+Object+Model
5 RepoMMan project, http://www.hull.ac.uk/esig/repomman/
6 REMAP project, http://www2.hull.ac.uk/discover/remap.aspx
7 CLIF project, http://www2.hull.ac.uk/discover/clif.aspx
8 Converis, http://www.avedas.com/en/converis.html
9 MediaShelf LLC, http://yourmediashelf.com/
10 Hydrangea, https://wiki.duraspace.org/display/hydra/Hydrangea

https://wiki.duraspace.org/display/FCR30/Fedora+Digital+Object+Model
http://www.hull.ac.uk/esig/repomman/
http://www2.hull.ac.uk/discover/remap.aspx
http://www2.hull.ac.uk/discover/clif.aspx
http://www.avedas.com/en/converis.html
http://yourmediashelf.com/
https://wiki.duraspace.org/display/hydra/Hydrangea

Project Acronym: HiH

Version: Final Report v1.0

Contact: r.green@hull.ac.uk

Date: November 2011

Page 10 of 34

our project started out with the Hydrangea codebase, that demonstrator package is now deprecated

in favour of more stable, core Hydra functionality. Accordingly, throughout the rest of this

document we shall refer consistently to ‘Hydra software’, ‘Hydra code’ and the like; we shall not

attempt to make unnecessary distinctions. This has also led to us increasingly calling the project

‘Hydra in Hull’ (HiH).

The Hydra software works in tandem with related components as shown in Figure 1. Further

information on these components is available on the Hydra project website11 and in the technical

documentation for this project. The HiH project has implemented all of these components around

our Fedora repository as part of the development and embedding of this new way to use Fedora.

Figure 1: The outline Hydra architecture

Aims and Objectives
HiH set out to take the Hydrangea demonstrator package and underlying code offered by the Hydra

Project12 and to use it as the basis for a much improved repository implementation at the University

of Hull which would replace the Muradora-based system in use since 2008.13 Specifically we

intended:

 To document and feed back the experiences and benefits of such implementation, including
the use of Ruby on Rails for repository applications, and use of the Hydra models to the
Hydra and wider repository communities

11 Hydra technical components, http://projecthydra.org/technology/
12 See http://projecthydra.org
13 At http://edocs.hull.ac.uk until late December 2011

http://projecthydra.org/technology/
http://projecthydra.org/
http://edocs.hull.ac.uk/

Project Acronym: HiH

Version: Final Report v1.0

Contact: r.green@hull.ac.uk

Date: November 2011

Page 11 of 34

 To embed the use of Hydrangea within the local cataloguing team and other institutional
users wishing to deposit content, and document changes to processes required

 To implement the Hydra models within systems integrated with the repository to aid
consistency of content management using Hydrangea

 To make recommendations on the further development of Hydrangea

 To generate requirements for other Hydra heads

The Project Plan anticipated a number of clearly delineated stages to our work:

1. Preparation of a virtual machine environment

2. Conversion of existing repository content for Hydra compliance

3. Implementation of a ‘read-only’ repository using this converted content

4. Initial user testing and training

5. Process embedding

6. Extension of the new repository to full ‘CRUD’ capability

7. Further user testing and training

8. Roadmap development

This sequence was predicated upon the incremental development of the existing Hydra

demonstrator package, ‘Hydrangea’. Whilst this demonstrator was never offered as production-

worthy code, it rapidly became apparent that the code fell well short of that standard and we have

undertaken substantial work both to improve it and add to it and to feed back many of these

enhancements to the Hydra community to become part of the subsequent ‘HydraHead’ core code.14

It also quickly became apparent that our original plan to deal first with ‘read-only’ aspects of the

new repository and then with other functionality later was, with hindsight, naive; in practice, the

read-only code shares much in common with the create/update/delete code and the two needed to

be developed side-by-side.

Another complication arose that we had intended at the outset that our Fedora digital objects

should be structured according to guidelines already in place from the Hydra Project.15 In the event,

we decided to develop these guidelines yet further and this meant that the design was evolving until

almost the end of the project and it was not appropriate to convert our old content until this design

stabilised. Again, we believe that our developments in this area complement and enhance the Hydra

guidelines and the work has been made available to the community.16

Despite this shifting and evolving landscape as Hydra matures, the project has largely achieved its

aims, albeit the process undertaken was significantly different from that originally planned.

14
 We must acknowledge here a substantial contribution to this effort from MediaShelf LLC who have contributed code and

training to the project under a separate University of Hull contract
15

 See:
https://wiki.duraspace.org/display/hydra/Hydra+objects%2C+content+models+%28cModels%29+and+disseminators
16

 See: https://wiki.duraspace.org/display/hydra/University+of+Hull+implementation (in development)

https://wiki.duraspace.org/display/hydra/Hydra+objects%2C+content+models+%28cModels%29+and+disseminators
https://wiki.duraspace.org/display/hydra/University+of+Hull+implementation

Project Acronym: HiH

Version: Final Report v1.0

Contact: r.green@hull.ac.uk

Date: November 2011

Page 12 of 34

Methodology
The overall methodology for HiH largely followed a pattern that has been used successfully in a

number of previous JISC-funded projects undertaken at Hull. This approach places the user at the

centre of technical development in order to ensure that the work carried out is actually relevant to

the purpose at hand.

HiH was not a ‘clean-slate’ project; rather it built on the successful repository already operating at

the University. Against this background we decided (unusually) that we should not undertake an

initial user requirements survey as our users’ likes and dislikes of the then current repository system

were well understood. For this reason too, the initial implementation of Hydrangea was intended

deliberately to echo some of the design of the existing system so that users would not experience a

culture shock when coming to the new interface. It was then intended that, over time (largely

beyond the period of this project), the design and functionality would evolve further to meet user

needs and to incorporate appropriate enhancements provided by new technological developments.

Initial work undertaken revolved around two parallel aspects of development: one to establish a set

of servers suited to enterprise delivery of the Hydra system (something that, at the start of the

project, was still an evolving specification amongst the Hydra partners), and the other to decide how

the Hydra guidelines for constructing Fedora digital objects should actually be implemented in Hull’s

new repository.

Phase one of the coding work had been intended to produce a read-only version of the new

repository based on the code used in the Hydrangea demonstrator. In fact, quite a lengthy

discussion took place before deciding to do this: an alternative Hydra codebase, developed at the

University of Virginia, was also considered. The reader should bear in mind that at the time, in the

spring of 2011, the Hydra partners were still working towards what might be described as ‘definitive

Hydra code’. Once our original plan was endorsed, work began to implement a local version of the

Hydrangea code. The University was fortunate to be able to secure the services of MediaShelf LLC

(through a separate contract) to help with this process. Our agreement was not just that MediaShelf

should contribute to our software development process but that, as authors of much of the original

Hydra code, they would simultaneously train our own developers in working with Hydra and with

Ruby on Rails more generally. Weekly Skype calls were initiated – one for management purposes

and one for the developers involved. Towards the end of the project a short, daily ‘scrum’ was also

initiated via Skype to allow even closer contact between the developers enabling them to share out

tasks on a much more frequent basis.

As noted elsewhere, it became quickly apparent that our intention to produce a read-only version of

the repository divorced from its create-edit functionality was misguided; however we did wish to

take advantage of some user testing as soon as possible. Thus the team concentrated on producing

a first demonstration for staff and student end users centred on a very restricted set of content but

showing a number of the features we felt would be desirable. This first user testing took place in

June 2011 and produced very positive feedback.

Project Acronym: HiH

Version: Final Report v1.0

Contact: r.green@hull.ac.uk

Date: November 2011

Page 13 of 34

Work then pressed ahead to add additional functionality to the system and to develop capability

around further types of content. Another round of user testing and feedback was carried out in late

August based on a partial export and conversion of content from the ‘old’ repository.

During the software development, which settled down to a series of weekly iterations, extensive use

was made of Atlassian’s JIRA project tracking tool17 – a facility kindly made available to participants

in the Hydra Project by DuraSpace. All code is held in a public Github repository for ease of

management and sharing. In addition, the team used a Hudson (to become Jenkins) continuous

integration server18 to check the frequent builds. Our code contained integrated RSpec and

Cucumber tests19 for use with this system. Thus, code cannot make its way into the application until

it has been tested and validated as working within the scope of the existing tests.

In the late summer, the team found itself in a position to begin the process of taking the entire

content of the existing repository and transferring it to the new system. During this period our

progress suffered a major setback due to an unplanned extended absence for our main software

developer due to bereavement. Upon his return, in mid-September, we embarked on a period of

intense activity in order to be able to launch the new repository for the start of the University

semester on the 26th of the month. It is literally true to say that the task was completed with only a

very few hours to spare.

As launched, and thus as at the end of this project, the new repository offers the end user a fairly

comprehensive service across a wide range of content albeit there is a considerable number of,

largely cosmetic, bugs still to address. However, behind the scenes, the provision for the creation of

new content and editing content still lacks some significant elements and the level of differentiated

provision by content type that we would wish. These issues are now being dealt with post-project as

quickly as time allows. It is hoped that by Christmas 2011 the new repository will be fully

operational in its role as a replacement for our Muradora-based system, although we anticipate that

we shall be developing additional functionality and services for many years to come.

Implementation

Infrastructure design

One of the early elements of the project’s work was to settle on an infrastructure design for Hull. At

the time the project started there were very, very few Hydra heads offering production services and

so we had very little experience elsewhere to draw on.

Following a number of conversations with technical staff at Stanford and Virginia, and in Hull’s own

Information and Communications Technology Department (ICTD) a basic configuration was

17
 http://www.atlassian.com/software/jira/overview

18
 http://hudson-ci.org/

19
 http://cukes.info/

http://www.atlassian.com/software/jira/overview
http://hudson-ci.org/
http://cukes.info/

Project Acronym: HiH

Version: Final Report v1.0

Contact: r.green@hull.ac.uk

Date: November 2011

Page 14 of 34

identified. The architecture is implemented using virtual machines (VMs) rather than free-standing

servers.

A three stage system has been set up: a development stage, a test stage and a production stage.

Three software components of the Hydra stack are known to be resource-hungry and it was decided

that these each merited its own VM although such division was unnecessary for the development

server. Thus the production server group consists of three VMs:

 a VM for the primary Hydra code itself (Ruby on Rails and other delivery-related software)

 a VM to host the Fedora repository

 a VM to host the Solr indexing system

In addition use is made of a fourth VM in the University’s centrally-managed MySQL cluster. The

first of these (Ruby etc) runs Red Hat Enterprise Linux as an operating system whilst the other two

run Windows Server 2008.

The test server has an identical configuration. The development server hosts the three components

on a single VM. In all cases the digital content is held on the University’s central storage area

network.

Immediately prior to launching the production service for the Hydra repository the memory

allocation was increased in the production cluster. The service was launched with 2GB memory for

the Fedora test/production servers, 4GB for the Hydra test/production servers and 6GB for the

corresponding Solr servers.

The technical configuration is more fully described in a separate project document.20

Digital object design

For good or bad, the ‘F’ in Fedora stands for ‘flexible’. One of the places where this flexibility is

manifest is in the building of digital objects in Fedora to hold content. The Hydra project has put a

lot of time into developing a modular approach to building Fedora objects which retains much of this

flexibility but yet allows adopters to follow common patterns and thus to adhere to a loose notion of

standards compliance in order that the same UI software can be used across different repositories.

The term ‘Hydra-compliant’ is gaining acceptability in the repositories community as an approach to

structuring digital content.

Our approach to building Hydra in Hull was that we wanted our repository to adhere as closely as

possible to the Hydra guidelines. We felt it important, as a founding partner institution for Hydra, to

validate our own recommendations. This apparently simple decision had, though, some serious

implications. Hull’s institutional repository would comprise the most complex mix of content yet

20
 Green, Richard A. and Lamb, Simon W. (2011) Hydra in Hull: Technical infrastructure and installation Shortly to be

available from the University of Hull digital repository at hydra.hull.ac.uk

Project Acronym: HiH

Version: Final Report v1.0

Contact: r.green@hull.ac.uk

Date: November 2011

Page 15 of 34

attempted in a Hydra head. In attempting to deal with this complexity we found it necessary to

adapt and further extend the Hydra guidelines. As with much else of our development work, these

enhancements to the Hydra offering were fed back to the community and now form part of its

central documentation.

In essence, current versions of Fedora anticipate that a digital object will subscribe to a content

model, a ‘cModel’ in Fedora-speak. Hydra has suggested that these cModels be additive. Thus all

content-bearing objects would subscribe to a cModel that said, in effect, the object had a single

content datastream. So-called compound objects have multiple content bearing datastreams, but

instead of having a completely different cModel Hydra recommends subscribing to two additive

cModels: the declaration for the first (otherwise single) datastream, and a second that declares a

largely arbitrary number of optional, additional datastreams (29 more in Hull’s case). This has

frequently been described as a ‘Lego brick’ approach with the additive cModels each a different

brick.

This was well and good, but in implementing our code we needed to be able to distinguish between

a single content datastream object that represented, for example, a presentation and one that

represented, for example, a handbook in order that the information displayed to a user about each

could be appropriately customised. To manage this we went down the road of ‘coloured Lego

bricks’: a cModel to represent a presentation content datastream and a different one to represent a

handbook content datastream. The models are identical except in name (colour) but that relatively

minor difference allows us to treat them differently in the code. In addition, though, and accepting

that the project would not have the time to produce the range of different cModels that we would

ultimately want, we defined an underlying generic cModel which, for now, allows us to cope with a

considerable range of our content types in a common fashion until such time as we can refine our

approach further. If an object declares itself to be a ‘newspaper’, something for which we do not

have specific capability at this point, the ‘generic’ code is used until such time as specific handling

can be developed.

A second object design issue was that Fedora allows one to create compound objects, a single digital

object containing one or more content datastreams – a simple, one content datastream object is a

special case of this – or complex (often called atomistic) objects – a parent object with no digital

content (only metadata) attached to one or more further objects, each containing a content

datastream. This complex approach is particularly appropriate where the content objects might be

re-used as elements of a different object; the compound approach is generally deemed appropriate

where the content must be kept bound together for copyright reasons and/or the multiple content

datastreams are the same intellectual content but represented in different ways. Hull needed to

implement both approaches as appropriate to particular forms of content.

Other elements of the Hydra ‘Lego-brick’ approach deal with datastreams for metadata of one sort

or another. Two such datastreams should be mentioned here:

Project Acronym: HiH

Version: Final Report v1.0

Contact: r.green@hull.ac.uk

Date: November 2011

Page 16 of 34

MODS metadata

Although it is fairly straightforward to implement other schemas, Hydra generally recommends the

use of MODS as the basic descriptive metadata for content. At the project’s outset Hull intended to

do this, moving away from the much more restrictive Dublin Core used previously, and anticipated

supplementing it with specialist metadata where necessary: for instance to allow ETDs to be

described using the UKETD_DC schema. Having taken this approach for some months we realised

that it was easier to keep all the required information in MODS and then to create from it a

UKETD_DC representation ‘on-the-fly’ should someone request it. With this approach, only one set

of descriptive metadata needs to be maintained.

Content metadata

Each Hydra-compliant object contains a content metadata datastream which is a ‘one-stop-shop’ for

the UI software to find a range of non-descriptive items that are needed for the display. Hydra’s

content metadata schema was developed originally at Stanford and owes elements of its structure

to their particular, and highly evolved, information architecture. Hull has produced and

implemented a modified version of this that should have wider applicability; this revised schema has

been fed back to the Hydra community.

The results of our design work are that, in principle, we can create Hydra-compliant compound and

complex objects, and deal with them on screen in customised ways appropriate to their particular

content: thus the display screens for electronic theses and dissertations (ETDs) are significantly

different from those for student handbooks. Equally, we have generic pages that can be used where

this specialisation has not yet taken place or when we receive a new form of content that will

subsequently require some coding work done to accommodate its particular needs.

Software implementation

Alongside work on the digital object design, work commenced on a software implementation. In

practice there was a very dynamic interaction between the two development strands but they have

been separated here for clarity.

An iterative approach was taken to this; initially the iterations were generally about a week long but

towards the end of the project they became more frequent. As noted in the previous section, this

process involved intensive use of JIRA project tracking software, a Hudson continuous integration

server and a Github repository for handing code development. UI layout was largely handled using

the Balsamiq software for screen design (which could be integrated with JIRA to associate designs

with tickets).

The first period of work gave us rudimentary functionality around ETDs and presentations (complex

and simple-compound content respectively) and this was built out to encompass a range of other

content types (including the datasets promised in the Project Proposal). It became apparent that the

project did not offer the time to develop customised behaviours for the full range of content types

that the repository holds and thus, mid-summer, a switch was made to develop a generic handler –

Project Acronym: HiH

Version: Final Report v1.0

Contact: r.green@hull.ac.uk

Date: November 2011

Page 17 of 34

effectively coping with a superset of metadata – that could be used where specialisation had not yet

been possible.

The Hydra code developed for Hull as part of this project has been produced in such a way that our

web pages do not use JavaScript. This ensures that at the base level we can address accessibility

issues. A later phase of work (a move to HydraHead 3, see below) will allow us to layer over this

base JavaScript-enabled pages that can offer a better user experience for those wanting to take

advantage of it whilst maintaining accessibility through use of HTML5.

As part of the implementation, two rounds of user testing took place in which volunteers were asked

to undertake a guided exploration of the developing system, from the point of view of academic end

users, and to comment on it. The results of this testing were largely positive and the feedback from

it influenced a number of changes.

Whilst we were working on Hydra in Hull, the rest of the world was also working hard and at the end

of the project we find ourselves needing to update our software stack. Rails 2 has been superseded

by Rails 3 and Hydra now has an official ‘HydraHead 3’ Ruby gem containing the essential elements

of its code; a number of enhancements developed in Hull form part of this offering. This

combination, which will be installed post-project, will allow us over a period of time to enhance our

local Hydra implementation’s functionality, including a move to HTML5 compliance.

Enhancements

We should note here, in brief, a number of enhancements to the Hydra code developed as part of

this project but also fed back to the community.

Managed content

There are several ways to manage the storage of metadata and content in a Fedora repository. At

the outset of this project the Hydrangea code could only exploit a very limited range of these; Hull’s

work has extended this. In particular, some of the Fedora metadata datastreams can now be

managed independently in filestore (rather than being an inherent part of the XML that comprises a

Fedora digital object) and this has reduced the size of our objects leading to lower memory

requirements and better response times.

JMS listener

Hydrangea’s code implementation, made the assumption that it was the only source of traffic to the

underlying Fedora repository. In Hull this is not the case as objects can come from one of a number

of other sources. The Ruby gem, Solrizer, that maintains the Solr index associated with Fedora is

now triggered by a Java Messaging Service output from Fedora itself rather than directly by the

Hydra code. This means that the Solr index, and thus the Hydra UI, reacts to changes in Fedora no

matter where they originate: an object can be deposited in Fedora by a non-Hydra system but the

Hydra UI will immediately make it available to users (rights permitting).

Project Acronym: HiH

Version: Final Report v1.0

Contact: r.green@hull.ac.uk

Date: November 2011

Page 18 of 34

Sets

When this project started, Hydrangea did not support the notion of grouping objects into sets either

for management purposes or for display purposes. Hull’s work has added provision for both.

Structural sets can be used to group together like objects for management purposes (say all the

Physics PhD theses) whilst display sets allow users to identify groups of objects (say a particular

image collection) and can provide a page explaining the context of this collection as well as providing

access to it. Whilst not yet fed back into the Hydra core, this work is available for others to build on.

Workflow

Hull’s initial work with repositories was rooted in the notion that deposit of content in a repository

was part of a wider workflow. In implementing the ‘create’ elements of Hydra in Hull we have

developed the UI around a two stage process – initial creation of a repository object which might

take place within the Hydra environment (but which could occur elsewhere) and a quality assurance

stage, only after which is the content made available to appropriate users. Again, we hope that this

initial work might encourage others to adopt similar, workflow-driven approaches.

Full text indexing

Hull’s ‘old’ repository provided full-text indexing of pdf documents. Hydra’s Solrizer gem did not,

initially, provide this facility but Hull has had it enhanced and the additional functionality is now

available to the Hydra community.

Digital object conversion

Towards the end of the summer, following many tests, adjustments and refinements, we considered

our Fedora content models stable enough that we could export all our content from the ‘old’

Muradora-based repository (running over Fedora 2.4.2) and convert it to be Hydra-compliant and

able to run in a Hydra environment based on Fedora 3.4. This involved using conversion scripts

which had been following the same cycles of revision and refinement as the cModels themselves.

Conversion was actually a two part process. The first part involved a small piece of bespoke

software that would export objects in a particular part of the Muradora management tree. Thus one

could, in principle, export all the ETDs, just the Physics ETDs, or whatever grouping was supported. It

was thus possible to export content in batches that shared the same form of content and also,

crucially, shared the same security settings governing who had what sort of access (if any) to them.

The second stage involved a further piece of bespoke software that used an XSLT script to take an

exported object and reconfigure it in the new format, embedding links that would allow the actual

digital content to be retrieved and transferred to the control of its new Fedora system when the

converted object was imported. This second stage involved the operator in specifying exactly the

type of content represented in a batch of files (so that the appropriate Fedora cModel could be

assigned) and indicating the required security settings for use in the new repository. These new

objects were then imported to Hydra’s Fedora instance using Fedora’s own administration client. By

Project Acronym: HiH

Version: Final Report v1.0

Contact: r.green@hull.ac.uk

Date: November 2011

Page 19 of 34

virtue of the JMS listener service described earlier, they were then indexed by Solr and appeared in

the Hydra UI.

These two bespoke tools are currently held in a closed Github repository because they contain

administrative IDs and passwords; they will shortly be purged of this information and placed in our

public Github with the other Hydra in Hull code.

Embedding

The Hydra in Hull Project was not solely about producing code and running a repository. An

essential part of our approach involved ensuring that we were taking our users (both ‘end users’ and

repository management staff) on the journey with us. In addition, we were keen to ensure that our

colleagues in ICTD understood why we had insisted on adopting a repository solution that did not sit

wholly within a Windows framework (their preferred approach). Thus a number of meetings were

held during the course of the project to ensure that key players in our repository service were kept

up-to-date and involved.

Outputs and Results

For the academic end-user

The Hydra in Hull project was always seen as the first steps in a somewhat longer process to launch a

fully-functional, self-supporting Hydra-based repository for the University of Hull. That repository

entered service at the end of September and has supplanted the Muradora-based for our academic

users. (As we shall see in the next section, the ‘old’ repository is still running as a temporary

management solution.)

Project Acronym: HiH

Version: Final Report v1.0

Contact: r.green@hull.ac.uk

Date: November 2011

Page 20 of 34

Figure 2: Hydra repository home page

As a member of the public, the Hydra repository at Hull can be accessed via hydra.hull.ac.uk This

enables such a user to search and access the repository’s public content; more restricted content is

not accessible to them. (University users access the repository through our portal which, depending

whether they are a member of staff or a student, gives them greater security privileges.) The user is

able to use the facets at the left of the screen to narrow down the content to their area of interest

(here the ‘resource type’ facet is shown open) or to use a search box at the top of the screen. The

result of such a process is a search return (here the result of choosing the ‘dataset’ resource type):

Project Acronym: HiH

Version: Final Report v1.0

Contact: r.green@hull.ac.uk

Date: November 2011

Page 21 of 34

Figure 3: Hydra search return for dataset resources

The user can scroll through the results of the search or further refine it. Clicking on a resource

produces a ‘splash page’ describing the resource more fully and offering links to initiate content

download:

Project Acronym: HiH

Version: Final Report v1.0

Contact: r.green@hull.ac.uk

Date: November 2011

Page 22 of 34

Figure 4: Hydra splash page for a dataset

Here the user is presented with the descriptive metadata appropriate to a dataset held in the MODS

datastream. Had they chosen to access a publication, the page would have been somewhat

different:

Project Acronym: HiH

Version: Final Report v1.0

Contact: r.green@hull.ac.uk

Date: November 2011

Page 23 of 34

Figure 5: Hydra splash page for a publication

Here the splash page for a presentation shows rather different metadata and has a link to the

formally published article as well as the ability to download the University’s ‘local’ copy.

Opening the ‘show additional information’ panel allows the user to view the actual MODS metadata

and the ability to see it represented in other schemas – DC in all cases and additionally UKETD_DC

for electronic theses and dissertations. For all but the oldest content in the repository (by a quirk

represented in both splash pages above) the information under each download link comprises the

file size (in KB or MB as most appropriate) and the file type.

Project Acronym: HiH

Version: Final Report v1.0

Contact: r.green@hull.ac.uk

Date: November 2011

Page 24 of 34

For repository contributors

Approved repository contributors are able to log in to the Hydra repository in order to manipulate

content in various ways. Depending on their level of authorisation they may be able to create

and/or update and/or delete content.

As noted above, the pages available for these purposes at the end of the project are quite basic

forms, deliberately (as yet) devoid of JavaScript. We took the same approach to repository

management that we took to providing read access: that, ideally, each page should be customised to

the requirements of a particular content type. In other words, management pages should show

those fields that were required in a given situation and hide others.

Content creation

A logged-in manager (here a member of the Library ‘Content and Access Team’) has two key

additional functional links on the pages (s)he sees: one of which allows the creation of new content

and the other that allows a toggle between ‘view’ and ‘edit’ modes. If they choose to create new

content they must first identify the type (book, examination paper, ETD etc) and they are then

presented with the appropriate, largely blank, form – here for an examination paper:

Project Acronym: HiH

Version: Final Report v1.0

Contact: r.green@hull.ac.uk

Date: November 2011

Page 25 of 34

Figure 6: Create page for an examination paper

Project Acronym: HiH

Version: Final Report v1.0

Contact: r.green@hull.ac.uk

Date: November 2011

Page 26 of 34

Note that the fields available to the user are those appropriate to examination papers; other

potential MODS fields do not show here. Most of these fields are, by definition, singletons – which is

to say that they cannot have multiple values. Note, however, that the ‘Subject’ field has a green

button displaying a ‘+’ sign: this allows the addition of additional subject fields should they be

required. The ‘Publisher’ field has been pre-filled.

Once the metadata has been created and saved, appropriate file(s) can be uploaded and attached by

browsing the user’s computer drives. An appropriate display label can be created for each file and,

behind the scenes, the system captures additional metadata such as the file type and size. If more

than one file is attached, the sequence in which they should be displayed can be specified.

When these assets have also been saved, the bottom button ‘Submit to QA’ is used. If all necessary

fields have been filled in, the object is passed to the second level of workflow for quality assurance

by another member of the team.

The top of the QA page is identical to the first, but the lower section is considerably different:

Project Acronym: HiH

Version: Final Report v1.0

Contact: r.green@hull.ac.uk

Date: November 2011

Page 27 of 34

Figure 7: Part of exam paper edit page

Here, some of the automatically generated metadata is displayed and assets information is shown.

In addition, there are drop-down menus that allow the object to be allocated to a ‘structural set’ for

management purposes (this also determines the appropriate access permissions to use) and possibly

a ‘display set’ to group it for end-users with other objects (optional). Once the QA work is done, the

‘Submit’ button will expose the object to appropriate repository users.

Project Acronym: HiH

Version: Final Report v1.0

Contact: r.green@hull.ac.uk

Date: November 2011

Page 28 of 34

Editing

Should there be a need to edit an object that has been exposed in the repository, a generic form is

generally used that covers a superset of the metadata (there is a small range of specialised content

types that do have their own edit pages here).

Project Acronym: HiH

Version: Final Report v1.0

Contact: r.green@hull.ac.uk

Date: November 2011

Page 29 of 34

Figure 8: Edit page for general, published content

Project Acronym: HiH

Version: Final Report v1.0

Contact: r.green@hull.ac.uk

Date: November 2011

Page 30 of 34

The provision of such an extensive form was a deliberate choice in order to give our professional

library colleagues full range over the metadata that could be altered here. Potentially, this allows

them to deal adequately with unusual items.

Deletion

Towards the top right in figures 6 and 8 is a ‘delete’ button. Until the object is exposed in the

repository this button does, indeed, totally delete an object from the repository. Once the object

has been ‘published’, the delete button merely renders an object inactive so that academic end-

users cannot access it in any way.

Embedding

As previously noted, members of the Library Content and Access Team have been involved in the

project at regular intervals and they seem eager to use the new system. Even with the flux the

ongoing development has produced, they seem to feel that, once completed, the new system will be

a great improvement over the old.

Dissemination

During the course of the project, we have actively been disseminating its work:

1. The project contributed a presentation to two events at the 2011 Open Repositories conference

in Austin, Texas (OR11): the first a workshop around Hydra, the second a conference session on

Hydra in the Fedora specialist track.21

2. The project team hosted a presentation to the University’s Information and Communication

Technology (ICT) Department outlining the purpose of the institutional repository and specifically

detailing the reason for the move from the old Muradora-based repository to Hydra. The Hydra

technology stack was explained at some length.22

3. The project contributed to the showcase of JISC RTE projects at the Kultivate conference on 15th

July and also presented at the Kultivate sustainability conference on 30th September.

4. The project formed part of the JISC RTE event at the Edinburgh Repository Fringe on 4th August.

5. The project gave an update to the Fedora UK and Ireland User group meeting held in Manchester

in mid-September.

6. Hull’s Hydra implementation (and thus by inference the HiH project) forms a part of two papers

about the JISC-funded CLIF Project:

21 At https://wiki.duraspace.org/download/attachments/11502264/OR1124-7--v04-
110610.pdf?version=1&modificationDate=1307969239535
22 The technology explanation was based on a presentation given by Matt Zumwalt, a member of the Hydra Steering Group, at OR11.
Matt’s presentation is at: http://prezi.com/1lmhfhcvjhmm/hydra-technical-framework/

https://wiki.duraspace.org/download/attachments/11502264/OR1124-7--v04-110610.pdf?version=1&modificationDate=1307969239535
https://wiki.duraspace.org/download/attachments/11502264/OR1124-7--v04-110610.pdf?version=1&modificationDate=1307969239535
http://prezi.com/1lmhfhcvjhmm/hydra-technical-framework/

Project Acronym: HiH

Version: Final Report v1.0

Contact: r.green@hull.ac.uk

Date: November 2011

Page 31 of 34

a) an article which has been accepted for Ariadne23 No.68 (date tba), and

b) a paper submitted to the Journal of Digital Information24

and was referenced frequently in a presentation about CLIF to the European Sakai conference in

September.

7. The Hydra in Hull implementation is one of the key installations referenced in detail on the Hydra

Project’s own website.25

Outcomes
The first aim of our project was to document and feed back the experiences and benefits of our
move to Hydra, including the use of Ruby on Rails for repository applications, and use of the Hydra
models to the Hydra and wider repository communities. We have taken many opportunities to do
this and will take many more in the future. A major aspect of the project was to help the University
of Hull implement Hydra as a new repository interface and to go about it in such a way that we could
act as ambassadors and as a focus of guidance and assistance to those in the UK (and potentially also
mainland Europe) who may wish to investigate a similar undertaking; we believe that we are in a
position to do this. Indeed there are indications that others in the UK are seeking to follow suit and
we understand that a university in the USA is considering adopting our customised Hull code as the
basis for their own repository implementation. Hull’s Hydra repository offers such potential
adopters a reference implementation.

Secondly, we aimed to embed the use of Hydra within the local cataloguing (Content and Access)
team and other institutional users wishing to deposit content, and to document changes to
processes required. As regards the Content and Access Team, we have largely achieved this, albeit
there remains work to be completed for some of their management screens; unavoidable delays to
the project in the late summer meant that we have not yet involved other institutional users but this
will happen very soon. Modified documentation will become available at that point. It is clear that
there is considerable enthusiasm for the new system and we will build on that interest.

In order to improve the consistency of repository content management we had the aim of adopting
the Hydra content modelling strategy. This has been done successfully and in such a way that we
can now provide customised views both for reading and managing the different types of content.
This has been a significant area of development and has led to the extension of the core Hydra
guidance.

During and after the project we intended to contribute further to the development of Hydra and to
influence the development path that it takes. We have done this and, as members of the steering

23
 See: http://www.ariadne.ac.uk

24
 See: http://journals.tdl.org/jodi

25
 See: http://projecthydra.org

http://www.ariadne.ac.uk/
http://journals.tdl.org/jodi
http://projecthydra.org/

Project Acronym: HiH

Version: Final Report v1.0

Contact: r.green@hull.ac.uk

Date: November 2011

Page 32 of 34

committee, the Hull team will continue to do this. Our own implementation of the Hydra stack has
led to a number of improvements and additions to core Hydra code.

Finally, our last aim was possibly to generate requirements for other Hydra heads. The University
has been successful in bidding for further JISC funding in order to allow the development of a Data
Management Plan for the Department of History. As part of this new project the repository team
will have the opportunity to enhance the provision for datasets in Hydra both locally and
internationally. Whilst it is probable that Hull’s history work (and later the extension of this to other
departments) will not lead to the creation of a new, free-standing Hydra head – rather enhanced
provision within the existing one – it could form the basis of Hydra heads elsewhere.

Overall we are pleased with the outcomes of this project and feel that it will allow us to help and

encourage other Hydra adopters in the UK, mainland Europe and beyond.

Conclusions
The following conclusions can be made on the basis of undertaking the HiH project:

 Whilst realising that the Hydra software was continuing to evolve as the project took place,

the number of changes that resulted, whilst all being positive steps forward in its

development, had a complicating impact on progress within the project. Many of these

changes were necessary for our implementation, and as such we needed to take them on. It

may have been practical at times, though, to acknowledge that a change would take place,

but to also move ahead without that change at that time, returning to it later. We did do

this on occasion, but later in the project than was perhaps practical. Whilst this may have

resulted in a less up-to-date implementation, it may also have allowed smoother progress.

 The process of working in community on the development and implementation of Hydra has

been a very powerful and enabling feature of the work. Hull would never have been able to

pursue this on its own. The JISC project provided an opportunity to benefit from the

community effort in a way that implementing a commercial solution would not have

mirrored. It has encouraged us to continue our involvement in the Hydra community and

similar initiatives as appropriate for our long-term strategy.

 The Ruby on Rails technology base for Hydra has been one we have had to learn in depth as

part of this project, notwithstanding earlier preliminary activity. This technology does not

seem to be widely used within UK HE, and has had its critics over the years in terms of its

capability for large systems. Nevertheless, the flexibility it has offered us in being able to

both implement Hydra and build on this beyond the project has suggested it will be a

valuable asset and set of skills to have locally.

 The feedback from library staff and end-users to the interface has been very useful in

guiding our implementation, and will no doubt influence ongoing and future changes as it is

used more. We will thus continue to capture this feedback where we can to inform further

development of the repository. Additionally, involving the local ICT Department was

Project Acronym: HiH

Version: Final Report v1.0

Contact: r.green@hull.ac.uk

Date: November 2011

Page 33 of 34

essential in making development resource available and aiding understanding of what we

wished to achieve.

Implications
The end of this project is far from being the end of work on Hydra in Hull. There remains much to

do:

 The autumn of 2011 will see work in hand to complete full CRUD functionality for our major

content types and generic provision for the rest; we hope also to deal with most of the

known bugs during this time. Completion of this work will allow us finally to turn the old

repository off.

 Specialist support will be added for further content types, particularly images

 During November, enhancements will take place to the underlying core Hydra code (gems)

so that we can take advantage of the new Rails 3 release. Part of this enhancement will

enable the repository to be HTML5 compliant (thus addressing some accessibility issues) and

it will also allow us to add JavaScript functionality to pages more easily than at present

 Hydra management functionality will be offered to contributors beyond our Library

professionals and the necessary documentation and training will be provided. Within a

short time this may include key academic staff in the Department of History, a result of their

involvement in the newly JISC-funded History DMP Project.

 The 2011/12 strategic plan for Hull’s Library and Learning Innovation unit identifies work

that will integrate the repository interface with the main library catalogue (OPAC). This work

is anticipated during the spring of 2012.

These many developments, and others, will form part of a process and policy document describing

the use of Hydra in Hull. This document was intended as a deliverable for our project here but the

scope of it is now such that it will be slightly delayed and will be made available, via the repository,

post-project.

Recommendations
There are two main recommendations from the HiH project:

 That institutions/libraries, etc. should be open to getting involved and contributing, in

whichever way they can, to community initiatives to develop systems that meet common

needs. We have had periodic concerns about our inability at times to contribute much in the

way of technical development. Nevertheless, we have fed back what we can, and it is this

Project Acronym: HiH

Version: Final Report v1.0

Contact: r.green@hull.ac.uk

Date: November 2011

Page 34 of 34

willingness to participate that is at the heart of the success of the community that is behind

Hydra.

 Those managing digital content should give careful attention to how it is structured and

organised, in order to facilitate its long-term curation. This is not simply a case of structuring

it to fit with the system being used to hold it, but a need to understand how a digital file and

the components associated with it (e.g., metadata, surrogates, etc.) should be related so

that the context around digital content is kept alongside the content itself. Fedora aids this

approach through its digital object model, but this is not a system-specific attribute and can

be applied regardless of technology.

